European

SBioMA

Configuration Layer

- CONFIGURATION
COM

SNOLLYDIddY

Reference Documentation

Copyright

Disclaimer

Release Issue Date
1 3 June 2019

© European Union, 2019

Reproduction is authorised, provided the source is acknowledged, save
where otherwise stated.

Where prior permission must be obtained for the reproduction or use of
textual and multimedia information (sound, images, software, etc.), such
permission shall cancel the above-mentioned general permission and
shall clearly indicate any restrictions on use.

On any of the MARS pages you may find reference to a certain software
package, a particular contractor, or group of contractors, the use of one
or another sensor product, etc. In all cases, unless specifically stated, this
does not indicate any preference of the Commission for that particular
product, party or parties. When relevant, we include links to pages that
give you more information about the references.

Feel free to contact us, in case you need additional explanations or
information.

2 Configuration Layer Documentation

European
Commission

Contents
1 Aboutthisdocument............ ... 3
2 About the Configuration layer...............cooiiiiiiiii i 5
The BioMA three layers architecture it i i i 6
Purposes of the Configuration layer. i i i 8
3 Configuration Layer Technical Documentation............................... 11
Terminology used inthischapter i e 12
Main INEerfaces. o\ttt e e 13
Other classes and their relationship. ... i e 14
IConfigurable interface and Configuration Dictionary, 16
IConfigurable implementation sample i 19
IModelCallerinterface.ot e 23
ModelOutput and RUNKeY Classes . ..ot i i et 24
Model composition and ModelCallerlterator, 26
Data providers and IDataProviderinterface i i i, 28
BioMA Applications plugin architecture and IBiomaPlugininterface 29
Configuration files it e 31
How to deploy a library within an application. i, 34
PerSiSter MECHANISM .« ot e e e e e e 35

How to transform a composition layer modelling solution into a configuration layer’s one. .. .40

Configuration Layer Documentation 1

CONTENTS

2 Configuration Layer Documentation

About this document

This document describes the BioMA Configuration layer, one of the
architectural layers of the BioMA Framework.

This document is targeted to software developers who want to create an
application based on the configuration layer, or who want to transform a
model into a configuration layer’s compliant model.

Before reading this document, it is suggested to read these documents
about the BioMA Framework:

¢ BioMA Framework User Guide, which describes the architecture and
the components of the framework

¢ Composition Layer Documentation, describes the layer that allows
composing modelling solutions and components

You can find all BioMA-related documents in the Agri4Cast Software
Portal.

Normal users of the BioMA platform (e.g., the BioMA Spatial user, or an
agronomical modeller) do not need to read this document in order to use
the platform. We warmly suggest to the modellers to use the CLIC
application in order to create a modelling solution. This way, CLIC will
also create the configuration layer version of the modelling solution,
without any effort by the user. (You can find the CLIC User Guide in the
Agri4Cast Software Portal).

If, for some reasons, the modeller creates a composition layer modelling
solution without using CLIC, and he/she wants to create the
configuration layer version of the modelling solution, as well, please refer
to section “How to transform a composition layer modelling solution into
a configuration layer’s one” on page 40. Even in this case, the modeller
does not need to read this whole document.

In brief:

¢ The modeller who uses CLIC to create a modelling solution does not
need to read this document.

Configuration Layer Documentation 3

https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=s
https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=s
https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=s

1 - ABOUT THIS DOCUMENT

¢ The modeller who creates a composition layer modelling solution
without using CLIC, must read only the chapter “How to transform a
composition layer modelling solution into a configuration layer’s one”
on page 40.

¢ The developer who wants to transform a generic model (not using the
composition layer) into a configuration layer modelling solution must
read this document entirely.

¢ The developer who wants to create an application based on the
configuration layer must read this document entirely.

The topics are organized as follows:

Topic Description

“About the Configuration ¢ What the Configuration layer is with respect
layer” on page 5 to the BioMA framework architecture

¢ Main purposes of the Composition layer

“Configuration Layer ¢ Terminology used in this chapter
Technical Documentation”

¢ Main Interfaces and their relationships
on page 11

e Other classes and their relationship

e BioMA Applications plugin architecture and
IBiomaPlugin interface

* Persister mechanism
¢ Configuration files
¢ How to deploy a library within an application

¢ How to transform a composition layer
modelling solution into a configuration layer’s
one

4 Configuration Layer Documentation

About the Configuration layer

This chapter is organized into the following sections:
¢ “The BioMA three layers architecture” on page 6

e “Purposes of the Configuration layer” on page 7

Related topics:

e “Configuration Layer Technical Documentation” on page 11

Configuration Layer Documentation 5

2 — ABOUT THE CONFIGURATION LAYER

The BioMA three layers architecture

The BioMA modelling framework simulation system has been discretized
in layers, each with its own purposes.

The following diagram shows the framework layers:

layer

| |

CONFIGURATION \EH

layer

MODEL
layer

As you can see, the configuration layer stays on top of the composition
and the model layers. Please, note that there is no direct dependency
between the configuration and the composition layer: it means that a
configuration layer modelling solution does not need to be built on top of
a composition layer modelling solution.

COMPOSITION cﬁ

SNOILYOIddV

There is a dependency from the configuration layer to the model layer
because some model layer classes (e.g., the VarInfo class) are used in the
public interfaces of the configuration layer

¢ The model layer is where fine granularity models are implemented as
discrete units.

¢ The composition layer is where basic models from different
components are composed to build a modelling solution.

¢ The configuration layer is where information and data (configuration
items) can be added to a modelling solution to make it usable in a
specific context. (More details are provided in the next section).

Currently, the applications that use the configuration layer are BioMA
Spatial and Optimizer.

The first allows running the simulations of the modelling solutions. The
second allows calibrating the parameters of the modelling solutions
versus some reference data.

You can find the BioMA Spatial and the Optimizer user guides in the
Agri4Cast Software Portal.

6 Configuration Layer Documentation

https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=s

PURPOSES OF THE CONFIGURATION LAYER

Purposes of the Configuration layer

The Configuration layer allows adding information to a modelling solution
to make it usable in a specific context. The information consists of
configuration items which specify the information needed, the
information allowed, and possibly the tool to edit the information.

The Configuration layer also includes handles to run the model and to
change model parameters.

By using the configuration layer it is possible to manage the input of the
data into any modelling solution in the same way, so it is possible to build
generic applications (like BioMA Spatial and Optimizer) that run any
modelling solution. So, it is eliminated the need to create a new
application whenever a new modelling solution is created or modified.

So, the configuration layer must be seen as a layer to standardize any
modelling solution to be managed in the same way by the applications.

The functionalities that the configuration layer provides to the
applications are:

¢ The possibility to fill the input data directly (e.g., the application user
inputs a number as a variable value).

¢ The possibility to fill the input data by specifying the sources where to
read the data from (e.g., the connection to a DB or the path to CSV
file).

¢ The validation of the input data to fulfil certain requirements.

¢ The possibility to guide the application user in the process of filling the
input data (e.g., to show in a list all the possible values for a certain
variable).

e The possibility to define different ways to save the simulation outputs
(“persister” objects) and configure them.

¢ The possibility to iterate the execution of a modelling solution in any
dimension (for example on different years, or on different locations).

¢ The possibility to save in a configuration file all the inputs entered by
the user and to reload the configuration file later.

The BioMA framework provides a specific Graphical User Interfaces (GUI)
to manage the configuration layer into the applications. This GUl is
already included in the BioMA Spatial and Optimizer applications.

Configuration Layer Documentation 7

2 — ABOUT THE CONFIGURATION LAYER
See also:

¢ “The BioMA three layers architecture” on page 6

e “Configuration Layer Technical Documentation” on page 11

8 Configuration Layer Documentation

Configuration Layer Technical
Documentation

This chapter is organized into the following sections:
¢ “Terminology used in this chapter” on page 12

¢ “Main Interfaces” on page 13

e “Other classes and their relationship” on page 14

¢ “BioMA Applications plugin architecture and IBiomaPlugin interface”
on page 29

e “Configuration files” on page 31
¢ “How to deploy a library within an application” on page 34
e “Persister mechanism” on page 35

e “How to transform a composition layer modelling solution into a
configuration layer’s one” on page 40

Configuration Layer Documentation 11

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

Terminology used in this chapter

The library

The C# object names and namespaces are written in italic.

The namespace of the configuration layer C# objects is
EC.JRC.MARS.ConfigurationLayer.Core.

In this document, the classes having this namespace will be named only
through their Name. Where there are references to classes having
different namespace, it will be clearly written.

Where is written “the applications”, it refers to the applications built on
the configuration layer. Currently, these are BioMA Spatial and Optimizer

The configuration layer is defined in the
EC.JRC.MARS.ConfigurationLayer.Core.dll C# software library.

See also:
e “Main Interfaces” on page 13

e “BioMA Applications plugin architecture and IBiomaPlugin interface”
on page 29

12 Configuration Layer Documentation

MAIN INTERFACES

Main Interfaces

The main interfaces of the configuration layer are: IConfigurable and
IModelCaller.

IConfigurable represents an object that can be “configured”: it is possible
to set the values of its internal properties using a configuration item.

At configuration layer, a modelling solution is defined as a public class
that implements the IModelCaller interface. The applications code
interacts with the deployed modelling solutions through the IModelCaller
interface. The IModelCaller interface extends the IConfigurable interface,
so an implementation of IModelCaller is also IConfigurable.

The next figure shows the architectural structure of the configuration
layer: a modelling solution (e.g., a single model object or a composition
layer modelling solution) is referenced in the configuration layer through
an adapter, which implements the IModelCaller interface. Once the
adapter of the modelling solution is created, the modelling solution can
be used by the applications:

Configuration layer
applications (e.g.
Spatial)

Configuration layer

core

IModelCaller interface
Implements

Configuration layer
modelling solution
(implementation of

IModelCaller) Original modelling
solution

Configuration Layer Documentation 13

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

Other classes and their relationship

The figure below shows the relations between the classes and the main
interfaces of the configuration layer:

IConfigurable =
Intertace

= IValidatabie
=+ ICustom Serialioabie

IModelCaller
Irterface

= IConfgurabie
= lannotatable

IModelCallerComposer
Interface
= IModelCaler

- ICenfigurable

AbstractParametersDescrniption
Abstract Cliss

Uses ¥
ParametersSetConfiguration ¥ #
Class . s
=+ IConfigurable I

o

Varlnfo
Class

-

Description:

Konfigurable

Configurationiter ¥
Abstract Class

J [Enumerable <KeyValuePair<string, Configurationltems >

= -.*[cwwnmnmm, =]

Sealed Clas

N,

\ < IDictienany <Runkey, DataCollection >
ModelOutput ¥
Class
Uses Uses
4 = |
RunKey 3 DataCollection ¥
Sealed Clas 3

¢ The ModelOutput class represents the output of the simulation of the
model. It is defined as a dictionary of RunKeys and DataCollections.

¢ The RunKey represents a set of values that describe the configuration
of the simulation in a unique way. It is used as a key to identify

14 Configuration Layer Documentation

OTHER CLASSES AND THEIR RELATIONSHIP

different simulation results inside the ModelOutput class (for
example, each key can represent the output of a different location in
a location-iterated model execution).

¢ The DataCollection is a class belonging to the BioMA Model Layer and
it is the container of the output of the simulation.

¢ The ConfigurationDictionary class contains the configuration values
of the IConfigurable objects. It is defined as a set of
Configurationltems.

¢ A Configurationltem describes one of the elements of the
configuration. E.g., a configuration may contain one item that
describes the kind of weather data, one item that describes the
location data, etc. The set of these configuration items is the
ConfigurationDictionary. Each item is provided with the rules to check
the validity of its value. The ConfigurationDictionary has the
functionality to check the validity of all its Configurationltems.

¢ The AbstractParametersDescription is an abstract class that defines a
template to create the component specific "parameters description"
objects. The "parameters description" is the object that contains the
logics to retrieve the parameters of a component of a modeling
solution. A "parameter description" is composed by several
ParametersSetConfiguration objects, one for each sub-component of
the component. So, we have a two levels architecture for managing
the parameters: the modelling solution parameters are managed by
different AbstractParametersDescriptions (one for each component).
Each component parameters are managed by different
ParametersSetConfigurations (one for each sub-component). In case
the modeling solution is based on the BioMA Model/Composition
Layer, the sub-components are the "strategies" (implementation of
IStrategy), whereas the components are the composition layer
components (ISimulationComponent).

¢ A ParametersSetConfiguration contains the logics to retrieve the
parameters of a sub-component. E.g., a ParametersSetConfiguration
may read the parameters from a XML file, or get the parameters using
a query to a database, etc. A ParametersSetConfiguration can be
configured, so it implements the IConfigurable interface.

¢ The parameters are defined as object of VarInfo type. The Varinfo
class comes from the BioMA Model Layer and contains the object
properties to store the value of the parameters and the logics to
check the validity of the values (e.g., the value's validity boundaries).

These classes are described in detail in the next sections.

Configuration Layer Documentation 15

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

See:

¢ “IConfigurable interface and Configuration Dictionary” on page 16
¢ “|Configurable implementation sample” on page 19

¢ “IModelCaller interface” on page 23

¢ “ModelOutput and RunKey classes” on page 24

¢ “Model composition and ModelCallerlterator” on page 26

e “Data providers and IDataProvider interface” on page 28

IConfigurable interface and Configuration Dictionary

The IConfigurable interface represents an object with a configuration.

A configuration is the handle to change or read the internal status of the
object in a generic way (i.e., without using specific properties). Every
object that can be configured should implement IConfigurable. The
configuration is implemented as a ConfigurationDictionary object, which
is a collection of Configurationltems objects.

The table below shows the main property of the IConfigurable interface:

Icon |Member Description
el Configuration Returns the configuration of the object as a
ConfigurationDictionary.

A Configurationltem represents an element of the configuration of the

model whose Value property can be set, read and verified against some

validation logic. It is used together with the ConfigurationDictionary
class. Users of this class (or of child classes) are of 2 types:

e Consumer: The user that needs to read the Value. It will instantiate
this class (or child classes) and will provide, via the appropriate
delegates, validation rules for the value contained. This corresponds
to the rule that consumers know when a configuration element value
is valid for their own purposes.

¢ Provider: The user who sets the Value property providing therefore
configuration information to the Consumer. Once the Value has been
set, it can call the validation methods, asking the Consumer if the
value is suitable for its own purposes.

The Value property is a string property. Each configuration item contains

the logics to transform the Value to the "parsed value".

16 Configuration Layer Documentation

OTHER CLASSES AND THEIR RELATIONSHIP

For example, a particular Configurationltem can parse the Value to a
number, or to a DateTime. The "parsed value" is obtained by calling the
GetParsedvalue() method. Hence the parsed value can be of any Type,
it is defined as an object.

The parsing logics are contained in a specific instance of
IGenericValueConverter interface defined in the constructor of the
Configurationltem by the Consumer.

The table below shows the main methods of the Configurationltem class:

Icon |Member Description
) Configurationltem Creates a new instance of the class. The created
S (ConfigurationDictionary, Configuratioltem refers to the ConfiguratioDictionary passed
GenericVerifierDel, as the containing dictionary. The IGenericValueConverter
IGenericValueConverter<String>, |contains the logics to convert the Value to the "parsed value".
Type)

i) Configuration Returns the configuration of the Configurationltem (composite
pattern).

iy ConfigurationltemType The actual type of the Value property.

iy GenericVerifier Can be implemented to provide any further verification logic
suitable for the configuration element.

] GetParsedValue() Returns the parsed value, according to the
IGenericValueConverter configured in the constructor, or to
the one registered with StringConverterRegistry.

] IsErrorPresent(String) Used during Configurationltems' validation in the
ConfigurationDictionary.CheckConfigurationltemsValidity()
method.

¥ setHandler Event that occurs when the property Value is set.
% |validate()
iy Value The value (string) of this Configurationltem.
e Verify() Must be implemented to call the delegate configured in

IValue.GenericVerifier.

The ConfigurationDictionary is a collection of Configurationltems, plus
the functionalities to manage that collection (verify the consistency of
the items against validation rules, save the collection, verify the
correctness of the whole collection). Users of this class are of 2 types

¢ Consumer: The user who needs to read the values of the
Configurationltems. It will instantiate this class providing the exact list
of the Configurationltems' names it needs, and will provide, via the
appropriate delegates, validation rules for each Configurationltem
contained.

Configuration Layer Documentation 17

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

¢ Provider: The user who sets all the Values properties, providing
therefore configuration information to the Consumer. It can, once it
has set all the Values, call the verification method
CheckConfigurationltemsValidity(), asking the Consumer if the values
of the Configurationltems are suitable for its own purposes. This class
is sealed, so it's not possible to redefine the containment and global
validation logic, while it's possible to provide a custom
Configurationltem, by sub classing it.

A particular subclass of Configurationltem is the
LoadableConfigurationltem: its Value is a fully-qualified class name. Its
parsed value is an instance of the class identified by the Value.

If the class implements IConfigurable, then a tree-like structure is
created, where an IConfigurable creates another IConfigurable, and so
on. We say that the LoadableConfigurationltem “implies” the newly
create IConfigurable.

For example, an IModelCaller may have a LoadableConfigurationltem
that creates the instance of another IModelCaller: this way, the first
model caller can "use" the latter.

The table below shows the main methods of the ConfigurationDictionary
class.

Member

Description

ConfigurationDictionary(String[]) |An instance of this class has the items described by the array of

string passed to the constructor: after the creation, the user
cannot add or remove any keys.

allSet

Event triggered when, after setting a Value for one of the items
in this instance, all the Configurationltem(s) contained are set
in the sense of CheckConfigurationltemsPresence().

CheckConfigurationltemsPresence | Throws Exception if a Configurationltem value is not set.

()

CheckConfigurationltemsValidity() | Throws Exception if verification is not passed. In this method,

first of all CheckParametersPresence() is invoked to ensure the
Configurationltem's values presence; then, further verification
is performed by invoking the methods IsErrorPresent and
Verify().

18

Configuration Layer Documentation

OTHER CLASSES AND THEIR RELATIONSHIP

Icon

Member

Description

ConfigurationEqualsTo(Configurati
onDictionary)

Checks that this configuration is equals to the
“otherConfiguration” parameter. It checks that:

¢ The two configurations contain the same set of keys (the
order is not important).

e Each configuration item has a corresponding configuration
item of the same type.

e For each couple of corresponding configuration items, it
checks that:
- the two corresponding configuration items have the same

value;

- if the two corresponding configuration items are
LoadableConfigurationltem and their implicated object is
a IConfigurable, it checks that the two configurations of
the implicated objects are equals (recursively).

lgi

GetConfigurationltem(String)

Gets the Configurationltem related to one key.

&

GetConfigurationltemForimpliedO
bject(Object)

Searches for the Configurationltem that "implied" the
IConfigurable passed as a parameter. The search is conducted
recursively in all the ConfigurationDictionaries implied, starting
with the root dictionary in the hierarchy containing this one.

GetConfigurationltemParsedValue
(ConfigurationDictionary, String)

Gets the parsed value for the Configurationltem identified by
the key passed as parameter.

GetConfigurationltemValue(String)

Gets the value related to one key.

ig e Ll

Keys

Retrieves the list of all Configurationltem’s names, in the order
in which they were configured in the Constructor.

&

ResetValues()

Resets the values for all Configurationltems in this dictionary,
while leaving unchanged the verification logic provided by the
delegates.

"

Set(String, Configurationltem)

Sets the Configurationltem corresponding to a given
Configurationltem name. This should not be invoked directly,
but via an extension method normally called Bind, provided by
each class extending Configurationltem. Its implementer
should also provide this extension method to this class in order
to bind properly the Configurationltem. The present method
Set is left public because it must be called inside the Bind
extension.

treeStructureChanged

Event triggered when the structure of the tree below this
configuration dictionary changes.

validationRuleChanged

Event triggered when a validation rule (e.g., the acceptable
values verifier or the generic verifier) of a configuration item
changes.

IConfigurable implementation sample

In the following, we provide the code of an example of an IConfigurable
valid implementation.

Configuration Layer Documentation 19

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

Key points:

¢ The using statement must include the main configuration layer
namespace: EC.JRC.MARS.ConfigurationLayer.Core.Configuration.

¢ The ConfigurationDictionary must be a private field of the class, and
must be available in GET by the public property Configuration.

¢ The ConfigurationDictionary must be instantiated in the constructor
of the class and should not be re-instantiated later. In fact, this could
lead to a change in the configuration (e.g., the set of configuration
item changes) and this will cause problems in the management of the
configuration by the applications.

¢ |n this example the configuration contains 2 configuration items:

- “ltem one” contains a string value. The constraint on the value is
defined in the temOneGenericVerifier method: the string length
must be less than 10 characters.

- “ltem two” contains an integer value. The configuration item is of
type “BoundedConfigurationltem”: this is a type of configuration
item which is useful to check that the value is between a lower and
a higher boundary. The boundaries are specified at the moment of
the item definition (in this case, the value must be between 1 and
30).

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Xml.Ling;

using EC.JRC.MARS.ConfigurationLayer.Core.Configuration;

namespace MyNamespace
{
public class TestConfigurable:IConfigurable
{
//constructor
public TestConfigurable()
{
//instantiate the configuration dictionary field
defining two configuration items
_configurationDictionary= new

non

ConfigurationDictionary("item one","item two");

//define the configuration item 1

ConfigurationItem il = new
UncheckedConfigurationItem(_configurationDictionary,
ItemOneGenericVerifier, typeof (string));

20 Configuration Layer Documentation

OTHER CLASSES AND THEIR RELATIONSHIP

//insert the configuration item 1 in the
configuration dictionary
_configurationDictionary.Set("item one", il);

//define the configuration item 2
ConfigurationItem i2 = new
BoundedConfigurationItem(_configurationDictionary,
null, ()=>"1",()=>"30",ItemTwoBoundariesVerifier,typeof(int));
//insert the configuration item 2 in the configuration
dictionary
_configurationDictionary.Set("item two", i2);

/// <summary>

/// Generic verifier (validator) of the value of
configuration item "item one"

/// </summary>

/// <param name="p"></param>

/// <param name="d"></param>

/// <returns></returns>

private string ItemOneGenericVerifier(ConfigurationItem
p, ConfigurationDictionary d)

{

if (((string)p.GetParsedValue()).Length >= 10) return

item one' should be a string made by less than 10 characters”;
return null;//return null of no error

/// <summary>
/// Boundaries verifier (validator) of the value of
configuration item "item two"
/// </summary>
/// <param name="p"></param>
/// <returns></returns>
private bool
ItemTwoBoundariesVerifier(BoundedConfigurationItem p)
{
return ((int)p.GetParsedValue() <=
Convert.ToInt32(p.HigherBound)) &&
((int)p.GetParsedvalue() >=
Convert.ToInt32(p.LowerBound));

}

//contains the configuration of the class

Configuration Layer Documentation 21

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

private ConfigurationDictionary _configurationDictionary;

public ConfigurationDictionary Configuration
{
//return the private field _configurationDictionary
that contains the configuration of the class
get { return _configurationDictionary; }

public void Validate()
{
//validation is managed by the configuration
dictionary CheckConfigurationItemsValidity method, that checks
the validity of every configuration item

_configurationDictionary.CheckConfigurationItemsvalidity();

}

public XElement CustomSerialize(SerializationContext
context)
{
return new XElement(“"empty");//no need of custom
serialization in this class

}

public void CustomDeserialize(XElement doc,
DeserializationContext context)

{

//no need of custom serialization in this class

public string Description

{

get { return "example class to demonstrate the
IConfigurable interface"; }

}
public string URL
{
get { return "http:\\myurl"; }
}

}

The following code is the code of the consumer that uses the
TestConfigurable class (writes and reads the configuration item's values).

22 Configuration Layer Documentation

OTHER CLASSES AND THEIR RELATIONSHIP

The handle to the configuration items is the GetConfigurationltem

method:

public void Test()

{

TestConfigurable obj= new TestConfigurable();

obj.Configuration.GetConfigurationItem("item one").Value
obj.Configuration.GetConfigurationItem("item two").Value

"hil";
"4,

obj.vValidate();//no validation errors
int res=(int)obj.Configuration.GetConfigurationItem("item
two").GetParsedValue();//it will return the integer 14

IModelCaller interface

IModelCaller interface must be implemented by all the modelling
solutions of the framework.

It provides the methods to:

¢ Configure the run of a simulation of the modeling solution

¢ Set the parameters of the modeling solution

e Verify the correctness of the configuration and initialize the model
(e.g., reset the internal status of the model)

e Execute the simulation

e Retrieve the result of the simulation

The table below shows the main method of the IModelCaller interface:

Icon

Member

Description

GetModelOutputSkeleton()

Returns the empty structure of the ModelOutput of the
Modeling Solution, represented by one entry. This method
should be implemented to return an empty ModelOutput
reflecting the structure that it will have at an invocation of the
IModelCaller.Call method, without data. This means that the
IDictionary{RunKey, DataCollection that ModelOutput
implements and that is returned here, should contain one
entry pair, with a RunKey with all the run code descriptors as
the key (but with fake values), and an empty DataCollection as
the value.

AddParametersAcceptable()

To be called to verify that the model parameters have
acceptable values. E.g., they have values in their range, etc.

Call()

Calls the execution of a Simulation Model.

ComponentOutputs

For each component of the model, returns the list of the
components outputs.

Configuration Layer Documentation 23

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

Icon |Member Description

e Configuration Returns the configuration of the model (inherited from
IConfigurable).

e Description() Returns the description of the model (inherited from
IAnnotatable).

- Deserialize(IConfigurable, Deserialize the configuration of the model: from an XML

- XElement, DeserializationContext) |element, creates the configuration. (Inherited from
ConfigurableSerializer). It is used to load a configuration saved
as XML by the Serialize method.

) Finalization() Called to perform “final” actions on this instance, after the Call
method.

) Initialize() Called to populate every data that needs to “survive” multiple
calls to the Call method.

g Metadata() Returns the metadata of the model. (Inherited from
|IAnnotatable).

g ParametersConfigurations Returns the objects (one for each group of parameters set)
that contains the configurations of the
ParametersSetConfiguration classes.

§ Serialize(IConfigurable, Serializes the configuration of the mode by saving the

SerializationContext) configuration in form of an XML element. (Inherited from

ConfigurableSerializer). It is used to save the configuration of
the model.

=y URL() Returns the URL associated with the metadata. (Inherited from
IAnnotatable).

] Validate() Validates the configuration of the model.

ModelOutput and RunKey classes

The execution of the method Call of IModelCaller returns a ModelOutput
object that represents the output of the model. It inherits from an
IDictionary<RunKey, DataCollection>, where the key is a RunKey and the
value is the DataCollection returning from a single run.

DataCollection is a container of data, structured as a collection of
“tables”. Every table contains a fixed set of columns and an extensible set
of rows.

The RunKey represents the key to identify the output of the model. It has
a dictionary structure, where the keys of the dictionary are called “run
code descriptors”. Both the keys and the values are string objects. To use
the RunKey, it is mandatory to set a value for each run code descriptor,
using the Set method (or the this[string key] set property). For each run
code descriptor, the value must be set only once.

The following table shows the main methods of ModelOutput:

24 Configuration Layer Documentation

OTHER CLASSES AND THEIR RELATIONSHIP

Icon |Member Description

) ModelOutput(String[]) Creates an instance of this class, with a fixed set of run code
descriptor names.

e Add(RunKey, DataCollection) Adds a RunKey, DataCollection pair.

) Add(KeyValuePair<RunKey, See IDictionary documentation.

DataCollection>)
e Clear() See IDictionary documentation.
) Contains(KeyValuePair<RunKey, See IDictionary documentation.
DataCollection>)
g Contains(RunKey) See IDictionary documentation.
- CopyTo(KeyValuePair<RunkKey, See IDictionary documentation.

= DataCollection>[], Int32)

gt Count Returns the number of RunKey, DataCollection couples in the
dictionary. See IDictionary documentation.

] GetEnumerator() Returns the enumerator for this instance.

av IEnumerable.GetEnumerator() Returns the enumerator for this instance.

§ GetRunKey(String[]) Builds a RunKey with the run code descriptor names
configured at instantiation of this class and the values passed
as parameter.

] GetRunKey() Builds a RunKey with the run code descriptor names
configured at instantiation of this class.

e IsReadOnly See IDictionary documentation.

= Item[RunKey] The DataCollection for the indexed RunKey.

e Keys Returns the enumeration of the RunKeys. See IDictionary
documentation.

iy Remove(RunKey) See IDictionary documentation.

) Remove(KeyValuePair<RunKey, Removes the couple RunKey, DataCollection from the

DataCollection>) ModelOutput dictionary. See IDictionary documentation.
iy RunCodeDescriptors Cloned array of the run code descriptor names.

) TryGetValue(RunKey, Returns the DataCollection association with the specified

DataCollection) RunKey. See IDictionary documentation.
gt Values Returns the enumeration of the DataCollections. See
IDictionary documentation.
The following table shows the main methods of RunKey:
Icon |[Member Description
=G Add(String, String) Calls the Set method. See Set method documentation.
e Add(KeyValuePair<String, String>) |See IDictionary documentation.

Configuration Layer Documentation 25

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

Icon |Member Description
e AllSet Returns true if all the run code descriptors’ values are set.
] Clear() See IDictionary documentation.
] CompareTo(RunKey) See IDictionary documentation.
= ComplementRunKey(String, String) | Creates a new RunKey that is equal to the current object but
= has a new run code descriptor. The new RunKey has all the
current object descriptors plus the new one. This method does
not modify the current object.
£ Contains(KeyVaIuePair<String, See IDictionary documentation.
String>)
= ContainsKey(String) See IDictionary documentation.
=9 CopyTo(KeyValuePair<String, See IDictionary documentation.
String>[], Int32)
ey Count See IDictionary documentation.
] GetEnumerator() See IDictionary documentation.
aw IEnumerable.GetEnumerator() See IDictionary documentation.
] GetType() (Inherited from Object).
i IsReadOnly See IDictionary documentation.
iy Item([String] See IDictionary documentation.
j‘f‘ Keys See IDictionary documentation.
§ Remove(String) Throws exception because it is not possible to remove a
descriptor from a RunKey.
£ Remove(KeyValuePair<String, See IDictionary documentation.
String>)
gl RunCodeDescriptorsRepresentatio |Returns a string representation of the descriptors of the
n RunKey.
G Set(String, String) Sets the value of the specified run code descriptor if, and only
if, the value had not already been set.
If the value has already been set, an exception of type
AttemptToModifyRunKeyException is thrown.

Model composition and ModelCallerlterator

26

An IModelCaller can be composed with other IModelCallers to create a
more complex model.

This can be done via the IModelCallerComposer interface. It implements
the IModelCaller interface to satisfy the “composite pattern”, i.e., the
composer can be in turn composed.

The following table, shows the method of the IModelCallerComposer

interface:

Configuration Layer Documentation

OTHER CLASSES AND THEIR RELATIONSHIP

Icon |Member Description
iy Add (IModelCaller) Adds and IModelCaller to the composer.
A particular type of composer is the iterator: the ModelCallerlterator
composes a model with itself, calling it several times as the number of
desired iterations.
At each call, the value of one of the configuration items (the iteration
field) is changed. It is used, for example, to run the same model on many
locations, or over many time periods.
The following table shows the main methods of the ModelCallerlterator
class:
Icon |Member Description
. ModelCallerlterator() Creates a ModelCallerlterator.
:', ModelCallerlterator(String) Creates a ModelCallerlterator setting the path where the
model to iterate is.
gl Add (IModelCaller) Adds and IModelCaller as iterated model of the iterator.
5 AreParamtersAcceptable() Checks the correctness of the parameters of the iterated
¥ model.
f-l‘ BuildModelCallerlterator(String, |Static method that is used to create an iterator over the model
IModelCaller) passed as parameters. The first parameter is the name of the
S iteration field (it must be one of the model’s configuration
items).
% Call() For each value of the iteration field, calls the Initialize - Call -
. Finalize methods of the iterated model. It also composes the
ModelOutput returned at each call, to a single ModelOutput
that has one couple RunKey-DataCollection for each iteration.
It reacts to the stop signal, canceling the iterations not yet
executed and returning the partial ModelOutput. At the end of
each iteration, an IterationDone event is triggered. At the end
of each successful iteration, an IterationSucceeded event is
triggered. At the end of each iteration with errors, an
IterationNotSucceeded event is triggered.
" Finalization() This method does nothing: the Finalization of the iterated
— model is called, at each iteration, in the iterator Call method.
. GetModelOutputSkeleton () Returns the iterated model GetModelOutputSkeleton.
:', GutNumberOflterations() Returns the number of iterations, i.e. the number of values set
in the iteration field.
5 Initialize() This method does nothing: the Initialize of the iterated model
— is called, at each iteration, in the iterator Call method.
ey InnerOriginalModel Returns the original model attached at the inner level of

iteration.

Configuration Layer Documentation 27

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

Icon |Member Description
iy ParametersConfigurations Returns the iterated model's ParametersConfigurations.
2 SetStopSignal() Activates the stop signal, checked at every iteration cycle.

Data providers and IDataProvider interface

28

The BioMA framework provides a set of data handlers created to provide
data required by the model to the application. These classes are not part
of the Configuration Layer, but are based on it, since they are
configurable to be easily configured inside the BioMA applications.

This allows extracting from the model the logics to retrieve the input
data, such as the weather information, and to put this logic in a
separated and proper component. The data providers can be used with
any modelling solutions, and can be deployed into the application
installation separately. Each data provider defines an interface, which
standardizes the data that the provider returns (e.g., the format of the
weather data).

Each provider can be used directly from the code of the model, or can be
referenced by the configuration of the modelling solution as a
LoadableConfigurationltem. The latter approach is better, because it
allows changing the instance of the provider at run time, giving a great
flexibility to the simulation.

The data providers implement the IConfigurable interface (to be
configurable) and the IDataProvider interface.

The EC.JRC.MARS.ModelLayer.Core.IDataProvider interface is an empty
interface (no methods or properties) that is used only to distinguish the
data providers.

These are the most commonly used data providers:

¢ Weather provider (interface
JRC.IPSC.MARS.WeatherProviders.Interfaces.|WeatherProvider):
provides weather daily data.

¢ Soil data provider (interface
JRC.IPSC.MARS.SoilDataProvider.Interfaces.ISoilDataProvider):
provides soil data.

¢ Agromanagement data provider (interface
JRC.IPSC.MARS.Agromanagement.Interfaces.
IAgromanagementProvider): provides agromanagement data.

Configuration Layer Documentation

BIOMA APPLICATIONS PLUGIN ARCHITECTURE AND IBIOMAPLUGIN INTERFACE

BioMA Applications plugin architecture and
IBiomaPlugin interface

BioMA applications (e.g., BioMA Spatial) allow a third-party developer to
build a plugin, that is, an external code that extends the functionality of
the application.

The plugins are deployable in BioMA applications as DLLs. The deploy
operation does not require neither a change in the application code nor
the rebuild of the application.

To be a valid plugin, a class must implement the interface IBiomaPlugin
defined in the JRC.IPSC.MARS.BiomaPlugininterfacesDefiniton.dll

software library.

The following table shows the methods of the IBiomaPlugin interface:

Icon |Member Description
g Dispose() For further use.
3 Execute() This method provides the logics of the plugin. It is called every
— time the plugin button is clicked in BioMA.
iy Host Set property. Sets the handle to the BioMA application through
the IPluginHost interface.
:-, Initialize() This method provides the initialization logics of the plugin. It is
called every time the plugin button is clicked in BioMA.
o PluginAuthor Returns the plugin author.
iy PluginAvailabilityStatusSet Returns the list of BiomaApplicationStatus in which the plugin
is available (i.e., the plugin button is clickable).
iy PluginDescription Returns the plugin description. It will be displayed as the label
of the plugin button in the BioMA GUI.
iy PluginimagePath Returns the path to the image that will be displayed on the
plugin button in the BioMA GUI. Leave it null to only display
text.
iy PluginLongDescription Returns the plugin long description.
- uginName eturns the plugin name. (This must be unique. It is not
ey PluginN R he plugi (Thi b i Iti
allowed to have two plugins with the same name).
i PluginVersion Returns the plugin version Id.

To be a valid plugin host (that is, an application that can host plugins) all
the BioMA applications implement the /PluginHost interface, which is
defined in the JRC.IPSC.MARS.BiomaPlugininterfacesDefiniton.dll

software library.

Configuration Layer Documentation 29

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

Through the IPluginHost interface the application can give the data to the
plugins (e.g., the last simulation output), or a handle to the current
modelling solution.

See also:
o “Persister mechanism” on page 35
e “Configuration files” on page 31

¢ “How to deploy a library within an application” on page 34

e “How to transform a composition layer modelling solution into a
configuration layer’s one” on page 40

30 Configuration Layer Documentation

CONFIGURATION FILES

Configuration files

The configuration of the IConfigurable object can be saved in a XML file,
following the format defined in the BioMA Configuration layer.

Its file extension could be .BCF (Bioma Configuration File) or .PCF
(Persisters Configuration File) being the file schema the same.

The BioMA configuration files are .XML files whose format and
organization are as follows:

<Serialization>
<IConfigurable class="JRC.IPSC.MARS.BIOMA.CORE2.RootModelCaller">
<Id>e</Id>
<Set>
<KeyDict>Modeling Solution</KeyDict>
<ValueDict>
EC.JRC.MARS.ConfigurationLayer.Core.IterationFramework.ModelCallerIter
ator
</ValueDict>
</Set>
<Set>
<KeyDict>Modeling Solution</KeyDict>
<KeyDict>Modeling Solution</KeyDict>
<ValueDict>
EC.JRC.MARS.WOFOSTOperationalModelCaller.WOFOSTOperationalModelCaller
</ValueDict>
</Set>

</IConfigurable>
<CustomSerializationsInTree>

</CustomSerializationsInTree>
<Events />
</Serialization>

Under the serialization tag, there are three tags: 1configurable,
CustomSerializationInTree and Events.

In common usage, the last two tags are always empty. So, in this
document, only the 1configurable tag is described.

The 1configurable tag contains a list of set tags, each one setting one
characteristic (also called 'configuration item') of the simulation.

Configuration Layer Documentation 31

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

32

The configuration items are defined within a tree structure: each item is
a leaf or a branch of the tree and belongs to one and only one parent in
the tree. The root of the tree is one.

Each set tag contains the identifier of the configuration item and the
value to set. The identifier of the configuration item is made by the
structure of the tree containing it, using the keybict tags for each level of
the tree.

For example, if this is the structure of the tree (A is the root; C, D and H
are leaves; B and E are branches)

A -> B -> C
-> D
-> E -> H

This is the identifier of item B:
<KeyDict>A</KeyDict>
<KeyDict>B</KeyDict>
This is the identifier of item H:

<KeyDict>A</KeyDict>
<KeyDict>E</KeyDict>
<KeyDict>H</KeyDict>

The value to set in the configuration item is defined within the valuepict
tag.

For example, to set the value 'v' in the item H, the following is the piece
of XML:
<Set>
<KeyDict>A</KeyDict>
<KeyDict>E</KeyDict>
<KeyDict>H</KeyDict>
<ValueDict>v</ValueDict>
</Set>

If the value to set is a collection of values (e.g., the list of locations to run)
the valuebict tag must contain all the values, separated by a semicolon

(;')-

For example, to set the values 1, 2 and 3 in the item H:

Configuration Layer Documentation

CONFIGURATION FILES

<Set>
<KeyDict>A</KeyDict>
<KeyDict>E</KeyDict>
<KeyDict>H</KeyDict>
<ValueDict>1;2;3</ValueDict>
</Set>

Another example: The sample code below is the initial part of a standard
BioMA modelling solution configuration.

There are two set tags:

e The first allows setting a configuration item called 'Modeling solution'
to
'EC.JRC.MARS.ConfigurationLayer.Core.IterationFramework.Modelcall
erIterator'.

¢ The second tag sets the item called 'Modeling solution/ Modeling
solution' to
'EC. JRC.MARS .WOFOSTOperationalModelcaller.wOFOSTOperationalModelc

aller":
<IConfigurable
class="JRC.IPSC.MARS.BIOMA.CORE2.RootModelCaller">
<Id>0</1d>
<Set>

<KeyDict>Modeling Solution</KeyDict>
<valueDict>
EC.JRC.MARS.ConfigurationLayer.Core.IterationFramewo
rk.ModelcallerIterator
</ValueDict>
</Set>
<Set>
<KeyDict>Modeling Solution</KeyDict>
<KeyDict>Modeling Solution</KeyDict>
<valueDict>
EC.JRC.MARS.WOFOSTOperationalModelcaller.WOFOSTOpera
tionalModelcaller
</valueDict>
</Set>

</IConfigurable>

See also:
e “How to deploy a library within an application” on page 34

¢ “How to transform a composition layer modelling solution into a
configuration layer’s one” on page 40

Configuration Layer Documentation 33

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

How to deploy a library within an application

34

In order to be used inside an application, the IConfigurable object must
be registered within the application’s deployment registry file. For most
of the BioMA applications, the file is called by default
"Deployedplls.xm1". In BioMA Spatial, the name of the deployment file is
configured in the application configuration main file.

The application writes in the deployment registry file the name and the
path of the libraries (DLL or EXE files) containing the deployed
IConfigurable objects.

When a library is registered, all the IConfigurable objects that are defined
in the library are deployed and can be used by the application.

A library can contain more than one IConfigurable object, all of them
become usable after the library is registered. If the user registers a library
that do not contain any /IConfigurable object, the library will be ignored.

It is also possible to register a set of libraries at the same time. To do so,
the libraries must be zipped in a unique ZIP file, renaming the extension
to ".bpkg" (BioMA Package file).

Most of the BioMA applications (e.g., BioMA Spatial) have an automatic
procedure to help the user in deploying the libraries. (For further
information, see the applications documentation here https://
agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?0=s).

The workflow to use an IConfigurable object is as follows:

1 The modeler writes the IConfigurable object (whatever function it
has. It could be a data provider, a modelling solution, a persister, and
so forth).

2 The modeler builds the library containing the /Configurable object.

3 If there are many objects and libraries that should be used together,
the user might create a BioMA Package file containing all the libraries.

4 The modeler deploys the libraries in the application following the
application’s specific procedure.

5 The modeler can use the IConfigurable object in the application.

See also:

¢ “How to transform a composition layer modelling solution into a
configuration layer’s one” on page 40

Configuration Layer Documentation

https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=s
https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=s

PERSISTER MECHANISM

Persister mechanism

In the BioMA Framework, a persister is an IConfigurable object that has
the function of saving the simulation results to a whatever form of
persistence (a database, a CSV file, and so forth).

A valid persister class must implement the [Persister interface. This
interface already extends the IConfigurable interface.

Like the other configurable objects, the persisters can be deployed into
the BioMA applications and can be used from the application user
interface. For example, in BioMA Spatial, it is possible to configure up to
4 persisters that allow saving the simulation results into 4 different forms
of persistence. For example, the results can be saved simultaneously to a
database and to a file.

A persister includes the logics to save both the simulation results and the
simulation metadata to the form of persistence. The metadata saving is
optional and can be left not implemented.

When saving the metadata, the model is passed to the persister using the
IAnnotatable interface, which defines the metadata of the model.
Furthermore, a textual description of the simulation and the serialization
XML content are passed to the persister, as well. This way, it is possible to
save in the form of persistence all the information that is needed to trace
and recreate the characteristics of the simulation.

A persister can be declared “acceptable” for a certain kind of
ModelOutput. Although a developer should try to develop a “universal”
persister that works for every possible ModelOutput, the system offers
the possibility of creating a customized persister that works only with a
specific ModelOutput, as well as of defining the persister suitable only for
that ModelOutput, using the IsAcceptableFor interface method.

The table below shows the methods of the /Persister interface:

Icon

Member

Description

StartingNewSavingSession() Triggers the start of a new “saving session”. A saving session

must be identified by a unique simulation ID. When this
method is invoked, a new simulation UD must replace the
current one. The new simulation ID must be used until the
StartNewSavingSession method is called again. The method
returns the simulation ID.

SaveOutputs(ModelOutput) Saves the specified ModelOutput to the form of persistence.

i g

CurrentSimulationld Returns the current simulation ID.

Configuration Layer Documentation 35

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

Icon

Member

Description

SaveMedatada(lAnnotable, string, |Saves to the form of persistence the metadata of the specified

string)

IAnnotable class, the specified descriptive string, and the
configuration string. This latter is a string that contains the
XML content of the configuration serialization.

IsAcceptableFor(ModelOutput Returns True if the persister is able to manage the persistence

output)

of the specified ModelOutput. Otherwise, returns False.

W

persisterMessageEventi Event triggered when the persister must launch a message to

the application that is using it.

36

A set of common usage persisters are already available in the BioMA
Framework applications:

EC.JRC.MARS.DBPersister.DBPersister

This persister allows saving a ModelOutput to a database. It also saves
the metadata relative to the model output. It uses the data layer classes
for saving both the metadata and the data (see the Data Layer
Documentation). Its configuration contains 3 items:

¢ Mapping file path: Path to the mapping file of the data layer.

e Connection: A ConnectionConfigurationltem that contains the
configuration of the connection of the DB (connection string +
connection provider).

¢ Save rules: An object that implements ISaveRule.ISaveRule for
managing the rules to save the data of a table. DBPersister will only
save the table’s rows that match the configured save rule.

EC.JRC.MARS.Persister.CSVPersister

This persister save the ModelOutput to a set of CSV files. It saves to a
different file each table that is contained in the ModelOutput. It does not
save the simulation metadata, and its simulation ID is always 0. Its
configuration has 2 configuration items:

¢ Directory: It specifies the directory where to save the CSV file(s).

¢ File name prefix: It specifies the prefix for the CSV file name(s).

EC.JRC.MARS.Persister.XmlPersisterAliIDataMetadataList

This persister saves to a set of XML files. The name of the files are
automatically created on the basis of the configured file name prefix and
the current timestamp.

The persister must be configured with the path where to save the file and
the prefix to be used to create the name of the file. The persister creates

Configuration Layer Documentation

PERSISTER MECHANISM

a file containing the metadata (.MET) and a file containing the XML
serialization of a System.Data.DataSet object. The DataSet is extracted
from the ModelOutput through the DataCollection structure. Moreover,
the persister creates an index file (.BRI) that indicates, in case of
iteration, the list of the XML files created.

The following shows an example of metadata file (.MET):

<?xml version="1.0" encoding="utf-8"
standalone="yes"?><Index><Title>Index of results logs for
simulation started at 2012-10-26_16-14-38. Description:'test'</
Title>

<Metadata>

<MetadataValue>

<field>Check preconditions</field>

<value>Disable</value>

</MetadataValue>

<MetadataValue>

<field>Simulation Configuration</field>
<value>EC.JRC.MARS.SimulationControl.CompositionLayerLibrary.Day
ByDayStartYearFromListSimulationControlProvider</value>
</MetadataValue>

<MetadataValue>

<field>WeatherProviderSimulationComponent Configuration</field>
<value>JRC.IPSC.MARS.WeatherProviders.Library.CgmsOracleEuropele
atherProvider</value>

</MetadataValue>

<MetadataValue>

<field>AgroManagementSimulationComponent Configuration</field>
<value>JRC.IPSC.MARS.CommonAgromanagementProviders.XMLFileAgroma
nagementProvider</value>

</MetadataValue>

<MetadataValue>

<field>SoilDataProviderSimulationComponent Configuration</field>
<value>JRC.IPSC.MARS.SoilDataProvider.Library.MPEFilesSoilDataP
rovider</value>

</MetadataValue>

<MetadataValue>

<field>CropSystPot Switch UseVernalization</field>
<value>false</value>

</MetadataValue>

<MetadataValue>

<field>CropSystPot Switch UseCO2</field>

<value>false</value>

</MetadataValue>

<MetadataValue>

<field>CropSystPot Switch IsC3</field>

Configuration Layer Documentation 37

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

<value>true</value>

</MetadataValue>

<MetadataValue>

<field>CropSystPot Switch UsePhotoPeriod</field>
<value>false</value>

</MetadataValue>

<MetadataValue>

<field>CropSystPot Switch UseTemperature</field>
<value>true</value>

</MetadataValue>

<MetadataValue>

<field>Parameters configuration</field>
<value>Parameters configuration updated</value>
</MetadataValue>

</Metadata>

The following shows an example of a data file (.XML). It is the
serializations of a System.Data.DataSet object:

<NewDataSet>
<WeatherProvider_Grid_weather>
<Step>0</Step>
<LocationID>65219</LocationID>
<Date>01/01/1997</Date>
<DOY>1</DOY>
<Year>1997</Year>
<Calculated_radiation»8215</Calculated_radiation>
<Day>1997-01-01T00:00:00+01:00</Day>
<E0>0.68445062</E0>
<Grid_no>65219</Grid_no>
<Maximum_temperature>13.40</Maximum_temperature>
<Minimum_temperature>5.80</Minimum_temperature>
<Minimum_temperatureDayAfter>0</Minimum_temperatureDayAfter>
<Rainfall»@</Rainfall>
<Snow_depth>0</Snow_depth>
<Vapour_pressure>7.69</Vapour_pressure>
<Windspeed>1.70</Windspeed>
<Hmax>0</Hmax>
<Hmin>@</Hmin>
<IsHumidityPresent>false</IsHumidityPresent>
<IsVpdPresent>false</IsVpdPresent>
<IsE@Present>true</IsE@Present>
</WeatherProvider_Grid_weather>
.etc..

38 Configuration Layer Documentation

PERSISTER MECHANISM

EC.JRC.MARS.Persister.ModelOutputCumulator

This persister cumulates many ModelOutput into a single ModelOutput
object. The final ModelOutput is exposed as a public property of the class,
which makes it available to other parts of the application. It does not save
the simulation metadata and its simulation ID is always 0.

Configuration Layer Documentation 39

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

How to transform a composition layer modelling
solution into a configuration layer’s one

40

A common issue when creating a new modelling solution is to transform
an existing composition layer modelling solution (see Composition Layer
Documentation) into a configuration layer modelling solution, in order to
run it in the BioMA applications.

This chapter describes how to do this through a simple procedure.

Note:

If you are creating the composition layer modelling solution using the CLIC application,
CLIC itself generates the configuration layer modelling solution too, meaning that no
other effort is required by the user.

A composition layer modelling solution is represented by a valid
implementation of the Ec. JRC.MARS . CompositionLayer.Core.ModeTRunner
abstract class.

A configuration layer modelling solution is represented by a valid
implementation of the IModelCaller interface.

An adapter between the two implementations is made available within
the BioMA Framework. Its name is:
EC.JRC.MARS.ConfigurationLayer.ModelCallerAdapter4CompositionLayer.
AModelcCallerAdapter4Composition.

This adapter class implements IModelCaller, so it is a valid configuration
layer modelling solution. It is built using the implementation of the
ModelRunner: the ModelRunner instance is set into the adapter instance
during the call of the adapter constructor.

Automatically, all the aspects of the ModelRunner that need a
configuration (e.g., the switches) are transformed into configuration
items.

Using this adapter class, the conversion between the two layers is
automatic. The following code snippet, shows the code to transform a
ModelRunner (CropSystModelRunner) into an IModelCaller
(CropSystModelCaller):

/// <summary>
/// Transform CropSystModelRunner into CropSystModelCallerb using
the composition layer - configuration layer adapter.

Configuration Layer Documentation

HOW TO TRANSFORM A COMPOSITION LAYER MODELLING SOLUTION INTO A CONFIGURATION LAY-

/// CropSystModelCaller must extend
EC.JRC.MARS.ConfigurationLayer.ModelCallerAdapter4CompositionLaye
r.AModelCallerAdapter4Composition
/// </summary>
public class CropSystModelCaller :
AModelCallerAdapter4Composition
{
/// <summary>
/// In the constructor, instantiate the modelToRun
protected property
/// (of type ModelRunner) to the concrete model runner
(type CropSystModelRunner).
/// Then call the InitializeConfigurationStructures method.
/// </summary>
public CropSystModelCaller()

{

modelToRun= new CropSystModelRunner();
this.InitializeConfigurationStructures();

/// <summary>

/// The OutputStructure of the model runner is exposed
through this public property

/// </summary>

public OutputStructure ModelRunnerOutputStructure

{
get { return modelToRun.OutputStructure; }

#region Overrides of AModelCallerAdapter4Composition

public override string Description

{
get { return "CRopSyst model caller"; }
}
public override string URL
{
get { return "http://"; }
}

Configuration Layer Documentation 41

3 — CONFIGURATION LAYER TECHNICAL DOCUMENTATION

public override XmlElement Metadata

{

get { throw new NotImplementedException(); }
}
#endregion

42 Configuration Layer Documentation

	About this document
	About the Configuration layer
	The BioMA three layers architecture
	Purposes of the Configuration layer

	Configuration Layer Technical Documentation
	Terminology used in this chapter
	The library

	Main Interfaces
	Other classes and their relationship
	IConfigurable interface and Configuration Dictionary
	IConfigurable implementation sample
	IModelCaller interface
	ModelOutput and RunKey classes
	Model composition and ModelCallerIterator
	Data providers and IDataProvider interface

	BioMA Applications plugin architecture and IBiomaPlugin interface
	Configuration files
	How to deploy a library within an application
	Persister mechanism
	How to transform a composition layer modelling solution into a configuration layer’s one

