European
Commission

SBioMA

Data Layer

Reference Documentation

Copyright

Disclaimer

Release Issue Date
1 2 June 2019

© European Union, 2019

Reproduction is authorised, provided the source is acknowledged, save
where otherwise stated.

Where prior permission must be obtained for the reproduction or use of
textual and multimedia information (sound, images, software, etc.), such
permission shall cancel the above-mentioned general permission and
shall clearly indicate any restrictions on use.

On any of the MARS pages you may find reference to a certain software
package, a particular contractor, or group of contractors, the use of one
or another sensor product, etc. In all cases, unless specifically stated, this
does not indicate any preference of the Commission for that particular
product, party or parties. When relevant, we include links to pages that
give you more information about the references.

Feel free to contact us, in case you need additional explanations or
information.

2 Data Layer Documentation

Commission

Contents
1 Aboutthisdocument............ ... 3
2 Aboutthe Datalayer..............ccooiiiiiiii e 5
Purposes of the Data layer it e e e e 6
3 Data Layer mainlibrariesc 9
Mapping between tables and domain classes. ...t e 10
Accessingthe database i 11
Setting up a G Project . ..o oot e 12
Creation of tables, domain classes, and mappingfile........... i ... 13
Generating database tables from a strongly-typed. 14
Generating database tables from a set of domainclasses......................... 15
Generating domain classes code from databasetables........................... 17
Generating the mappingfile. ... i i e 18
Data OperatioNS .. oot e e 21
Creating the IDB Resolver object and obtaining a referencetoatable 23
Multi-tables management by the sameresolver 23
Loading filtered datat e 24
REAdINgG rECOIdS . oottt e 26
AddiNg @ NeW reCOId . . . vt ittt e e 27
Deleting arecordou i e e 28
Committing changes to the physicaldatabase 29
Rolling back changesot e 30
Records locking strategieso oot e 32
Usage of optimisticlock 33
Usage of pessimistic loCK.t 33
4 DataSetDBLayer library............c.cooiiiiiiiii 37
INtrOdUCHION .« ..o 38
Description of the DataSetManager publicmethods i, 39
EXamPle Of US@ . . oo vttt ittt e e e e e e e e 40

Data Layer Documentation 1

CONTENTS

2 Data Layer Documentation

About this document

This document describes the BioMA Data Layer, one of the auxiliary
libraries of the BioMA Framework developed at JRC.

@ Tip:
For further information of the architecture and the components of the BioMA framework,
please visit the Agri4Cast Software Portal.

This document is targeted to software developers who want to create an
application or a model based on the BioMA Framework and need to
connect to a database for reading or writing data.

Although it is always possible, in an application or a model, to connect to
a database in a standard way (e.g., directly using the proper database
driver), we recommend to use the Datalayer because it allows to
decouple from the single database vendor. Many of the data providers or
data persisters developed in the BioMA Framework are based on the
Datalayer.

The normal user of the BioMA platform (e.g., the Bioma Spatial user or an
agronomical modeller) does not need to read this document in order to
use the platform unless he/she needs information about the mapping
mechanism and the XML mapping file format. In this case, it is suggested
to read “Generating the mapping file” on page 18.

The topics are organized as follows:

Topic Description

“About the Data layer” on | e What the Data layer is with respect to the
page 5 BioMA framework architecture

e Main purposes of the Data layer

Data Layer Documentation 3

https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=s

1 - ABOUT THIS DOCUMENT

Topic

Description

“Data Layer main libraries”
on page 9

¢ How to map database tables and how to
access the database

* How to create tables, domain classes, and
mapping file

¢ How to operate on data
e How to set locking strategies

“DataSetDBLayer library” on
page 37

What is it and how can be used the DataSetDB
library

e Example of usage

4 Data Layer Documentation

About the Data layer

This chapter is organized into the following sections:

e “Purposes of the Data layer” on page 6

Related topics:
e “Data Layer main libraries” on page 9

e “DataSetDBLayer library” on page 37

Data Layer Documentation 5

2 — ABOUT THE DATA LAYER

Purposes of the Data layer

6

The Datalayer Framework is a set of C# libraries that allows a
programmer to manage the query and the modification of the database
records abstracting the physical implementation of tables and hiding the
real database structure (e.g., table and column names). This way, the C#
program developer can use directly his own C# classes (domain classes)
to query and modify the database records.

Domain classes and database tables are related each other via XML
mapping files. These files can be automatically generated from the
database tables or from the domain classes.

The framework is composed by three distinct libraries:

JRC.IPSC.MARS.DB (main DataLayer library)

It contains the core of the framework: objects and interfaces that allow
the programmer to manage the mapping between domain classes and
DB tables, as well as the most common operations on records (i.e., insert
a new record, delete or modify an existing record, select a set of records).

JRC.IPSC.MARS.DatabaseUtility

It contains a set of tools that allow the programmer to automatically
create tables in a pre-existent database, from a strongly-typed DataSet or
from domain classes. Moreover, these allow the programmer to
automatically generate the XML mapping files.

These first two libraries are described in this document in chapter “Data
Layer main libraries” on page 9.

EC.JRC.MARS.DataSetDBLayer

It contains an alternative version of the Datalayer that does not require
the usage of domain classes. It uses System.Data.DataTable objects
instead of the domain classes. It can also use
EC.JRC.MARS.ModellLayer.Data.Table objects, which are part of the
BioMA Model Layer framework (go to the Agri4Cast Software Portal to
download the Model Layer document). This library is less powerful than
the main Datalayer library and is described in the last chapter of this
document “DataSetDBLayer library” on page 37.

Data Layer Documentation

https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=s

PURPOSES OF THE DATA LAYER

The framework also includes some tools that allow the programmer to
generate the C# code of the domain classes starting from pre-existing
database tables. These tools use the open-source software DBLing and
the Microsoft application SQLMetal.

Data Layer Documentation 7

2 — ABOUT THE DATA LAYER

8 Data Layer Documentation

Data Layer main libraries

This chapter is organized into the following sections:

e “Mapping between tables and domain classes” on page 10

e “Accessing the database” on page 11

e “Creation of tables, domain classes, and mapping file” on page 13
¢ “Data operations” on page 21

e “Records locking strategies” on page 32

Related topics:
e “DataSetDBLayer library” on page 37

Data Layer Documentation 9

3 — DATA LAYER MAIN LIBRARIES

Mapping between tables and domain classes

10

The main concept of the Data Layer framework is the mapping between
database tables and domain classes.

In the simplest case, a domain class (with certain public Fields and/or
Properties) is associated to a database table. The table columns are
associated one-to-one with the public Fields and/or Properties of the
domain class. It is not necessary that all Fields and/or Properties are
associated with the table columns and vice-versa.

In @ more complicated case, a domain class can be associated to more
than one table. So a Field of the class can be mapped into a column of a
table, while another Field can be mapped into a column of another table.
In this case it is mandatory that a one-to-one relation exists between the
two tables through a foreign key (see Figure below):

Domain class

Field 1 Field 2 Field 3 Field 4 Field 5

PN

Column 1

Column 2 ForeignKey1 Foreignkey2 | Column 3 Column 4

Table 1 Table 2

See also:

e “Accessing the database” on page 11

e “Creation of tables, domain classes, and mapping file” on page 13
e “Data operations” on page 21

e “Records locking strategies” on page 32

Data Layer Documentation

ACCESSING THE DATABASE

Accessing the database

The Datalayer framework is based on the ADO.NET Disconnected Layer
framework and is used to access and modify database data.

The two main actors of this framework are:

DataSet class: This class allows including a copy of the database data
and schema in the memory space of the application. The "DataSet"
type is a container for any number of "DataTable" objects, each of
which contains a collection of "DataRow" and "DataColumn" objects.

DataAdapter class: This class allows copying the data and schema of
the database to the DataSet and committing data changes to the
database. The DataAdapter object of the specific data provider
handles the database connection automatically.

Unlike the connected layer, the data obtained via a DataAdapter are
not processed using data reader objects.

DataAdapters keep the connection open for the shortest possible time.
Once the caller receives the DataSet object, the calling tier is completely
disconnected from the database and left with a local copy of the remote
data. The caller is allowed to insert, delete, or update rows from a given
”DataTable”, but the physical database is not updated until the caller
explicitly passes the DataSet to the data adapter for updating.

The following summarizes how the Disconnected Layer works:

1

A DataAdapter retrieves data from a database table through its Fill
command. The fill method is invoked with a SQL select string
parameter. This SQL string is used to select the records to retrieve
from the database.

The DataAdapter inserts the retrieved data into a DataSet object. It
can be initially empty, or filled with data from other tables.

The application reads and modifies the records, acting on the tables
contained in the DataSet.

The DataAdapter transfers the changes to the database through its
Update command.

Data Layer Documentation 11

3 — DATA LAYER MAIN LIBRARIES

DatalLayer

Data
DataSet [

As shown in the figure above, the Datalayer framework uses the
ADO.NET Disconnected Layer to access the database data.

This provides two benefits:

¢ The ADO.NET Disconnected Layer is database provider independent
(the framework provides a different DataAdapter for each database
type). So, the Datalayer framework is database provider independent
too.

¢ The number of access to the physical database is minimized.

Setting up a C# project

12

To use the Datalayer in a C# project the programmer needs to make the
project compatible with version 3.0 (or more) of .NET libraries.

The use of .NET 3.5 framework is suggested because this way LINQ can be
used within the project. LINQ allows the programmer to simplify the
access to data structures managed by the Datalayer.

The programmer needs also to set the project references to the two DLLs
that compose the Datalayer: JRC.IPSC.MARS.DB and
JRC.IPSC.MARS.DatabaseUtility.

See also:

¢ “Mapping between tables and domain classes” on page 10

e “Creation of tables, domain classes, and mapping file” on page 13
e “Data operations” on page 21

e “Records locking strategies” on page 32

Data Layer Documentation

CREATION OF TABLES, DOMAIN CLASSES, AND MAPPING FILE

Creation of tables, domain classes, and mapping file

In order to start using the Datalayer to manage data, a programmer
must have references to the database tables, to (create and) import
domain classes and to generate the XML mapping file.

So, before writing the application code, the programmer needs to
properly create and set-up the entities.

Here you find two common cases:

e The programmer has at his disposal a set of domain classes (or a
strongly typed DataSet) but the database tables do not exist.

e The programmer has at his disposal a set of database tables but there
are no C# classes to map table data in a C# application.

The following sections describe the solutions for managing these two
cases, for creating database tables from domain classes and vice-versa.
Moreover, the procedure to create the XML mapping file is described.

See:

e “Generating database tables from a strongly-typed” on page 14

¢ “Generating database tables from a set of domain classes” on page 15
e “Generating domain classes code from database tables” on page 17

e “Generating the mapping file” on page 18

Data Layer Documentation 13

3 — DATA LAYER MAIN LIBRARIES

Generating database tables from a strongly-typed

14

The DatabaseUtility library provides methods to generate the tables and
their primary and foreign keys from an ADO.NET DataSet object.

For each DataTable object included in the DataSet, the library creates a
database physical table. For each Column object in a DataTable, the
library creates a column in the table. The column type will be created on
the basis of the Column value data type.

Data type association rules are different depending on the database
provider. The following table depicts the relations between C# Column
types and database types for the two database provided in this version:

C# Type Oracle Column Type SQLServer Column Type

System.Intl6 INTEGER int

System.Int32 INTEGER int

System.Int64 INTEGER int

System.Decimal NUMBER numeric (28, 10)

System.Double NUMBER numeric (28, 10)

System.String VARCHAR2 (data column |nvarchar (data column
max length) max length)

System.DateTime DATE datetime

To generate a table from a DataSet:

1 Import the DataSet object into the project (even as a “reference”).
This way, the represented C# class can be referenced.

2 Ensure that the DataSet contains all (and only) the tables that must be
created. In the generation phase, the program will try to create all
tables in the DataSet.

3 Create one instance of the DatabaseUtility facade.

4 Call the createpBTablesFrompataset method, as shown below:

//get an instance of the DatabaseUtilityFacade

JRC.IPSC.MARS.DatabaseUtility.DatabaseUtilityFacade
facade = new DatabaseUtilityFacade () ;

//get an instance of the strongly typed DataSet
DataSet dataset = new ExampleDataSet ();

//use the facade method: CreateDBTablesFromDataset

Data Layer Documentation

CREATION OF TABLES, DOMAIN CLASSES, AND MAPPING FILE

facade.CreateDBTablesFromDataset (connstring,
JRC.IPSC.MARS.DatabaseUtility.Provider.SQLServerCompact, dataset);

Console.WriteLine ("tables created from dataset!");

5 Ensure that the tables were actually created in the database with
their primary and foreign keys.

If a table already exists in the database, an excelption will be thrown.

To check this, the programmer can invoke the checkexistsTable
method of the same facade, as follows:

//get an instance of the DatabaseUtilityFacade

if (facade.CheckExistsTable ("ExampleTable", connstring,
JRC.IPSC.MARS.DatabaseUtility.Provider.SQLServerCompact))

{

//do something

Generating database tables from a set of domain classes

The DatabaseUtility library provides methods to generate tables and
their primary and foreign keys from an array of C# Type objects,
representing a set of domain classes.

The library uses the ADO.NET DataSet paradigm as the underlying layer
to access the database. So, the generation procedure uses the same
procedure as described in the previous paragraph (see “To generate a
table from a DataSet:” on page 14), and the data type conversion follows
the same rules.

The generation procedure creates a database table for each domain class
provided, with the same name of the domain class. Every table is created
with columns corresponding to every public Property/Field objects of the
domain class. The table column name will be equal to the Property/Field
name.

Example:

The class prova:

public class Prova
{

private string miachiave;

Data Layer Documentation 15

3 — DATA LAYER MAIN LIBRARIES

public string miachiave
{
get { return miachiave; }
set { miachiave = value; }
}

private string miodato;

public string mydata
{
get { return miodato; }
set { miodato = value; }
}

private Decimal miodecimal;

public Decimal miodecimal
{
get { return miodecimal; }

set { miodecimal = value; }

}
generates the following table:

Test class
Miachiave nvarchar(256)
Miodato nvarchar(256)
Miodecimal numeric(28,10)

To generate the tables from a set of classes:
1 Import the classes in the project, even as “references”.

2 Ensure that you are using all (and only) the classes to be converted
into tables. In the generation phase, the program will try to create a
table for each class.

3 Create an instance of the DataUrtility fagade.

16 Data Layer Documentation

CREATION OF TABLES, DOMAIN CLASSES, AND MAPPING FILE

4 Call the createpBTablesFrombomainclasses method, as shown below:

//get an instance of the DatabaseUtilityFacade

JRC.IPSC.MARS.DatabaseUtility.DatabaseUtilityFacade
facade = new DatabaseUtilityFacade();

//create an array with the domain classes types

Type[] domainClasses = new Type[] {typeof (ProvaRelease),

typeof (ProvaRelease)};
//use the facade method: CreateDBTablesFromDomainClasses

facade.CreateDBTablesFromDomainClasses (connstring,
JRC.IPSC.MARS.DatabaseUtility.Provider.SQLServerCompact,

domainClasses) ;
Console.WriteLine ("tables created!"™);

5 Ensure that the tables were actually created in the database.

Generating domain classes code from database tables

In the open-source/freeware software community there is a number of
softwares that allow programmers to generate class code from database
tables.

In the Datalayer framework, two programs are used, depending on the
database provider:

¢ DBLing’s DBMetal for Oracle, PostgreSQL, MySql databases
¢ Microsoft’s SQLMetal for SQLServer databases

Both these tools act in the same way: they read the database schema and
then code it into an XML file in the DBML (Database Markup Language)
standard.

From the DBML file, the VisualMetal application generates the
corresponding C# class for each table.

DB tables ---- DBMetal / SQLMetal mm) DBML file ----VisualMetal s C# classes

Tools references:

¢ Microsoft's SQLMetal: it is part of the .NET release 2.0 (or more).
Documentation: http://msdn.microsoft.com/it-it/library/
bb386987.aspx

Data Layer Documentation 17

http://msdn.microsoft.com/it-it/library/bb386987.aspx
http://msdn.microsoft.com/it-it/library/bb386987.aspx

3 — DATA LAYER MAIN LIBRARIES

e DBLing's DBMetal and VisualMetal: tools created by the open source
project DBLing

¢ DBML standard: Microsoft standard to describe a database schema:
http://msdn.microsoft.com/en-us/library/bb399400.aspx

Example of usage of SQLMetal (with a SQLServerCe “.sdf” file):

SQLMetal.exe /dbml:dbmlfile.dbml "D:\....\mydb.sdf"

Example of usage of DBMetal with an Oracle DB:

DbMetal.exe /provider:Oracle /conn:"Data Source=XXX; User ID=xx;
Password=xx" /database:xxx ./dbmlfile.dbml" /culture:IT

Usage of VisualMetal:

1 Open the VisualMetal GUI application. (To install it, launch the
VisualMetal.exe file that can be found in the .NET installation
directory).

2 From the menu, select File > Open DBML.

3 Open the DBML file. As a result, the tables list will be shown in the
middle of the program interface.

4 From the menu, select File > Generate C#.

5 Choose the name and the path of the .CS file that will be created. The
file will contain the code of the classes generated from all the tables in
the DBML.

Generating the mapping file

The XML mapping file describes the association between the database
tables and the domain classes, as depicted in section “Mapping between
tables and domain classes” on page 10.

The mapping file schema is formally described in the XSD schema
mappingschema_x.x.xsd (where x.x is the version number). The
mappingTemplate.xm] file is a template that can be used to manually
create a file. Both these files are provided in the Datalayer release, in the
mappingSchema folder.

To manually create a mapping file:

1 Create a file header like the following:

<?xml version="1.0" encoding="utf-8"?>

18 Data Layer Documentation

http://msdn.microsoft.com/en-us/library/bb399400.aspx

CREATION OF TABLES, DOMAIN CLASSES, AND MAPPING FILE

Create a root tag like the following:

<mappings xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="JRC.IPSC.MARS.DB" xmlns="JRC.IPSC.MARS.DB">

For each domain class to map, create a domainMapping tag, with one
mandatory attribute: DomainClassName. This attribute must be the
same name of the domain class as used in the table method of class
DBResolver.

For example, if the application uses the domain class prova:

IDBTable<Prova> myTable = resolver.table<Prova>();

Meaning that, in this case, the DomainClasseName must be prova.
For each table associated to the domain class, create a tableMapping
element, with one mandatory field TableName. This attribute must
be the name of the DB table. The element can also define the
attribute where. This optional attribute can contain the SQL filter
expression (without the keyword WHERE) used to fill table in DataSet
with a filter, to avoid the loading of all rows.

For each column of the table mapped by the tableMapping element,
create a Column tag. This element has got 2 mandatory attributes:

- Name represents the exact real table column name.

- Member represents the exact propriety or field name of the
domain class.

If a domain class is associated to more than one DB table (see
“Mapping between tables and domain classes” on page 10), it is
mandatory to insert the relation information using the relations tag:

- Insert the relations tag inside the domainMapping tag.

- Inside the relations tag, insert one or more relation tags. This tag
describes the single relation between tables.

- Insert the attributes of relations tag: TableNamel, TableName2.
- Inside the relation tag, insert a relationcolumns tag.

- Inthe relationcolumns tag, insert one or more relationcolumn
tags that enumerate the one-to-one column associations between
tablel-columns and table2-columns.

- Insert the attributes of relationcolumn tag: TableColumnNamel,
TableColumnName2.

Data Layer Documentation 19

3 — DATA LAYER MAIN LIBRARIES

20

Using the CreateXMLMapping tool to create the mapping file:

The framework provides the custom tool CreateXMLMapping that allows
the programmer to avoid manually writing the file. The tool automatically
generates the XML mapping file from a DBML file (to create one, see the
previous section “To manually create a mapping file:” on page 18).

For a single table described in the DBML, the tool creates the
corresponding XML mapping tag. The mapping from a table to a domain
class with the same name is auto-generated, having fields corresponding
to the table column names.

If table or columns names are different from C# object names, then the
programmer must manually modify the XML so as to create the right
associations.

In this version, the generator cannot manage neither the relations
between a domain class and more than one table, nor the relations
between tables (foreign keys). These associations must be manually
created.

To run the CreateXMLMapping tool from a command line the
programmer must provide two parameters: the DBML file name and the
XML file name, as shown below:

CreateXMLMappingFromDBML.exe “.\temp\file.dbml" ".\temp\file.xml"

See also:

¢ “Mapping between tables and domain classes” on page 10
e “Accessing the database” on page 11

e “Data operations” on page 21

e “Records locking strategies” on page 32

Data Layer Documentation

DATA OPERATIONS

Data operations

Once all the required entities have been set up through the mapping as
described in the chapter “Creation of tables, domain classes, and
mapping file” on page 13, the programmer can start to develop a C#
application in order to access database data, via the JRC.IPSC.MARS.DB
library of the DatalLayer framework.

In the following sections are provided some examples of the most
common functionalities of the framework.

These examples use the dummy C# class prova as shown below:

public class Prova
{

private string miachiave;

public string Miachiave
{
get { return miachiave; }
set { miachiave = value; }
}

private string miodato;

public string Miodato
{
get { return miodato; }
set { miodato = value; }
}

private Decimal miodecimal;

public Decimal Miodecimal
{
get { return miodecimal; }

set { miodecimal = value; }

Data Layer Documentation 21

3 — DATA LAYER MAIN LIBRARIES

This class is mapped to the physical database table TabellaProva through
the mapping file shown below (please, note that in the examples the
physical names of the table and of his columns were never used):

<mappings>
<domainMapping DomainClassName="Prova">
<tableMapping TableName="TabellaProva">
<Column Member="Miachiave" Name="MIA CHIAVE" />
<Column Member="Miodato" Name="MIO DATO" />
<Column Member="Miodecimal" Name="MIO DECIMAL" />
</tableMapping>
</domainMapping>

</mappings>

For further information, see:

¢ “Creating the IDB Resolver object and obtaining a reference to a table”
on page 23

¢ “Multi-tables management by the same resolver” on page 23
¢ “Loading filtered data” on page 24

e “Reading records” on page 26

e “Adding a new record” on page 27

e “Deleting a record” on page 28

¢ “Committing changes to the physical database” on page 29

¢ “Rolling back changes” on page 30

22 Data Layer Documentation

DATA OPERATIONS

Creating the IDB Resolver object and obtaining a reference to a table

The reference to an underlying table is provided from the IDBResolver
interface. To create an instance of an rpsresolver implementation, the
programmer must call the getbbresolver method of the factory class
DBResolverFactory. Method parameters:

¢ The name of the XML mapping file relative to the domain classes used
in the program.
¢ The database connection string.

¢ The database provider identifier. The rrovider enumeration allows
the programmer to choose between the supported providers
(currently Oracle, PostreSQL, SQLServer, or SQLServer compact
edition).

IDBResolver resolver = DBResolverFactory.getDbResolver ("./
miofile.xml",connstring, JRC.IPSC.MARS.DB.Provider.SQLServerCompact)

Once created the 1osresolver Object, the programmer can use it to
retrieve the reference to an roerabie object, through the tabie method.
The 1peTable Object is the "logical” reference to the physical table(s)
associated to the domain class.

In the example below, the program obtains the reference to the table
linked to domain class prova, using the tabie method:

IDBTable<Prova> myTable = resolver.table<Prova>();

Multi-tables management by the same resolver

Each resolver can handle only one instance of a table related to a certain
domain class. So, if the method is called with the same domain class type
parameter, the resolver returns the same 1peranie instance .

The following shows an example:

IDBTable<Prova> myTablel = resolver.table<Prova>();
IDBTable<Prova> myTable2 = resolver.table<Prova>();

In this case myTablel and myTable2 are references to the same instance of
IDBTable.

Data Layer Documentation 23

3 — DATA LAYER MAIN LIBRARIES

However, the resolver can handle many 1oeTab1e objects that relate to
different domain classes.

The following shows an example:

IDBTable<Proval> myTablel = resolver.table<Proval>();
IDBTable<Prova2> myTable2 = resolver.table<Prova2>();

In this case myTablel and myTable2 are references to different instances of

IDBTable.

The name of the domain class, that is used as type parameter in the table
method, must be the same name used in the XML configuration file: the
domain class type name must match exactly the value in the XML file
(that is, the value that has been written in the DomainClassName
attribute of the domainMapping element tag).

If, for some reasons, this is not the case, it is possible to specify in the
table method the name of the object as used in the DomainClassName
attribute of the domainMapping element tag.

For example, if this is the mapping file related to the domain class prova:

<domainMapping DomainClassName="MyProva">
<tableMapping TableName="PROVARELEASE" >
. columns ..
</tableMapping>

</domainMapping>

the table object must be created as follows:

IDBTable<Prova> myTablel = resolver.table<Prova>("MyProva");

Loading filtered data

24

When the tab1e method is called, the Datalayer has to fill the database
table data into the application memory. To do this, the ADO.NET
framework is used, as depicted in section “Accessing the database” on
page 11: the DataAdapter object fills the DataSet with database table
data using a SQL Select command.

All the records of the table are retrieved and stored into the application
memory.

Data Layer Documentation

DATA OPERATIONS

For example, if the prova domain class is associates whit the
TabellaProva table, the SQL Select command used by the DataAdapter is
the following:

Select * from TabellaProva

This behavior is not very convenient if the table has got many records,
because the storing procedure requires a big amount of memory and this
is really useless when the application needs to read/modify only a little
set of records. Luckily, the DataAdapter allows filtering the records to
retrieve using a where clause in his SQL Select command. This is
supported by the Datalayer framework.

Please, note that the application does not know the record that were not
loaded. These will not appear in queries and cannot be modified.

To fill the tables using filters:
1 For each table to filter, do the following:

¢ Create a WhereCondition object using the constructor.
Constructor parameters: Physical table name, SQL filter condition
(without the keyword where).

¢ Insert the WhereCondition object in a WhereCondition array.

2 Call the getDbResolver method of the factory class
DBResolverFactory overloaded with the WhereCondition parameter.

3 Obtain the reference to the IDBTable object, through the table
method, as usual.

Example:
//create a WhereCondition object for every table to
filter (only “TabellaProva” in this example)
WhereCondition[] whereConditions = new
WhereCondition[1l];
whereConditions[0] = new WhereCondition ("TabellaProva",
"Miodecimal< 100");

//pass the WhereCondition[] parameter in the
getDbResolver method of the DBResolverFactory

IDBResolver resolver =

DBResolverFactory.getDbResolver

(H./
miofile.xml",connstring, JRC.IPSC.MARS.DB.Provider.SQLServerCompact,
whereConditions) ;

Data Layer Documentation 25

3 — DATA LAYER MAIN LIBRARIES

//obtain the (filtered) table

IDBTable<Prova> myTablel = resolver.table<Prova>();

Reading records

26

Once created the 1psTab1e object relative to the domain class we want to
manage, it is possible to read the underlying associated table(s).

To read, for example, read all records of the associated table(s) the
programmer must call the selectalirows method of 1pBTable class, as
shown below:

IList<IDBRow<Prova>> allRows = myTable.SelectAllRows () ;

The method returns a list (11.ist) of TDBRow Objects. These represent the
reference to the rows of physical associated table(s). Each 10BRow object
provides the bomainClassObject public property. This property allows
the programmer to access to the instance of the domain class associated
to the row.

For example, using this property, the programmer can retrieve and print
the list of all Miachiave fields of all rows in the associated ProvaRelease
physical table, as shown below:

IList<IDBRow<Prova>>allRows = myTable.SelectAllRows () ;

foreach (var row in allRows)

{
Console.WriteLine (row.DomainClassObject.Miachiave) ;
}

To filter the records, the programmer can use the seiect method and
insert a filter expression (1pooleanexpression class) that uses the names
of the domain class fields as the filter parameters :

IBooleanExpression filterExpr =
myTable.getBooleanExpression ("Miachiave", "LIKE", "%$xxx%");

IList<IDBRow<Prova>> filteredRows =
myTable.Select (filterExpr) ;

The programmer can combine more than one filter expression with
Iogical operators (jccl!ﬂan()perat,or class):

Data Layer Documentation

DATA OPERATIONS

IBooleanExpression filterExprl =

myTable.getBooleanExpression ("Miachiave", "LIKE", "%$xxx%");

IBooleanExpression filterExpr2 =

myTable.getBooleanExpression ("Miodecimal™, "<", "100");
IBooleanExpression filterExpr = new
BooleanExpression (filterExprl,BooleanOperator.AND, filterExpr2);

IList<IDBRow<Prova>> filteredRows =
myTable.Select (filterExpr) ;

In any case, to filter the records, it is better and simpler to use the
Microsoft LINQ library. Since the 1nist<1> class implements the
TEnumerable<T> interface, it is possible to apply LINQ functions on the
result of the seiectalirows method of 1peranie class, as shown below:

IList<IDBRow<Prova>> allRows = myTable.SelectAllRows () ;

IList<IDBRow<Prova>>filteredRows = from a in allRows
where a.DomainClassObject.Miodecimal< 100 select a;

Please remember that, in order to use LINQ in a C# project, the project
must be compatible with .NET 3.5 Framework. Moreover, the
programmer needs to import the system.Ling Namespace.

Adding a new record

The 1pBrable class provides a method to insert a new row in the
associated table(s), managing a new instance of the domain class.

To add a new record the programmer must:

1 Create a new instance of the class containing the values that will be
written in the table(s).

2 Invoke the createandInsertNewrow method of the rpeTapie class.

3 Call the comnit method of rperabie class to commit data to the
database (see “Committing changes to the physical database” on
page 29). Note that the rperabie object must be the one containing
the roBrow Object.

IDBTable<Prova> myTable = resolver.table<Prova>();

IList<IDBRow<Prova>> allRows = myTable.SelectAllRows () ;

Data Layer Documentation 27

3 — DATA LAYER MAIN LIBRARIES

IList<IDBRow<Prova>>filteredRows = from a in allRows
where a.DomainClassObject.Miachiave.Equals ("key") select a;

IDBRow<Prova> myRow = filteredRows.Single();
myRow.DomainClassObject.Miodato = "new string";
myRow.Update () ;

myTable.commit () ;

Note the usage of the LINQ singie () method: It ensures that one and only
one instance is in the filteredrows list, and returns it. The LINQ single ()
method throws an exception if the list is empty or if there is more than
one instance.

In the example above, we suppose that the field Miachiave is a unique
primary key; that is, filtering using this field, the query will return one (or
zero) record.

Deleting a record
The 1perow class provides a method to delete the physical row(s) in the
domain class associated table(s).

The delete procedure is similar to the modify procedure as described in
the previous paragraph. Firstly, the programmer must retrieve the right
instance of the 1perow class.

Once the 1perow Object is properly valued, the programmer can delete
the row(s) by completing the following steps.

To delete a record:

1 Call the peiete method of the 1perow 0Object. This method deletes the
corresponding row(s) of the table(s) stored in program memory.

2 Call the commit method of IDBTable class to commit data changes to
the database (see commit paragraph for further details). Please note
that the 1psTabie object must be the one that contains the roerow
object.

IDBTable<Prova> myTable = resolver.table<Prova>();
IList<IDBRow<Prova>>allRows = myTable.SelectAllRows () ;

IList<IDBRow<Prova>>filteredRows = from a in allRows
where a.DomainClassObject.Miachiave.Equals ("key") select a;

IDBRow<Prova> myRow = filteredRows.Single();

28 Data Layer Documentation

DATA OPERATIONS

myRow.Delete () ;

myTable.commit () ;

Committing changes to the physical database

The changes commit is managed at domain class level by the 1peTabie
object. The 1psTable class provides the commit method that commits to
the database every change that affected the table stored in memory.

Once the 1pTable Object is properly valued and changes are made, the
programmer can commit changes by completing the following step.

To commit changes:

¢ Call the commit method of 1psrabie class to commit data changes to
the database.

@ Note one

if the same 1pBreso1ver Object is used to manage more than one domain
class, the commit will affect only the physical tables associated to the
1pBTable Object that invoked the commit method, as shown below:

//changes on domain class Prova
IDBTable<Prova> myTable = resolver.table<Prova>();
IList<IDBRow<Prova>> allRows = myTable.SelectAllRows () ;

IList<IDBRow<Prova>>filteredRows = from a in allRows
where a.DomainClassObject.Miachiave.Equals("keyl") select a;

IDBRow<Prova> myRow = filteredRows.Single();
myRow.DomainClassObject.Miodato = "new string";

myRow.Update () ;

//changes on domain class OtherProva

IDBTable<OtherProva>myOtherTable = resolver.table<OtherProva

IList<IDBRow<Prova>> allOtherTableRows =
myOtherTable.SelectAllRows () ;

IList<IDBRow<OtherProva>> otherRows = from a in allRows where
a.DomainClassObject.Miachiave.Equals ("key2") select a;

IDBRow<OtherProva> myOtherRow = otherRows.Single();

myOtherRow.DomainClassObject.Miodato = "new other string";

Data Layer Documentation 29

3 — DATA LAYER MAIN LIBRARIES
myOtherRow.Update () ;

//it commits only the first change to the db, the one
applied on the “myTable” object

myTable.commit () ;

@ Note two

In the previous paragraphs, the commit was called just after the insert/
modify/delete command. This is not mandatory: it is possible to execute
an undefined number of changes on a table, calling the commit only at
the end of the last command, as shown below:

//change 1 on domain class Prova
IDBTable<Prova> myTable = resolver.table<Prova>();
IList<IDBRow<Prova>> allRows = myTable.SelectAllRows ()

IList<IDBRow<Prova>>filteredRows = from a in allRows
where a.DomainClassObject.Miachiave.Equals ("keyl") select a;

IDBRow<Prova> myRow = filteredRows.Single();
myRow.DomainClassObject.Miodato = "new string";

myRow.Update () ;

//change 2 on domain class Prova

IList<IDBRow<Prova>>otherRows = from a in allRows where
a.DomainClassObject.Miachiave.Equals ("key2") select a;

IDBRow<Prova> myOtherRow = otherRows.Single();
myOtherRow.DomainClassObject.Miodato = "new other string";

myOtherRow.Update () ;

//it commits 2 changes to the db

myTable.commit () ;

Rolling back changes

Roll-back changes is managed at domain class level by the 1psrabie
object. The 1peTable class provides the ro11back method that rolls back
any change that affected the table stored in memory.

30 Data Layer Documentation

DATA OPERATIONS

Once the 1pTable Object is properly valued and changes are made, the
programmer can roll back changes by completing the following step.
To roll-back changes:

¢ Call the roliback method of 1perabie:
myTable.rollback() ;

See also:

e “Mapping between tables and domain classes” on page 10

e “Accessing the database” on page 11

e “Creation of tables, domain classes, and mapping file” on page 13

e “Data operations” on page 21

Data Layer Documentation 31

3 — DATA LAYER MAIN LIBRARIES

Records locking strategies

32

An application created on the Datalayer framework, runs in the
Disconnected Layer context described in section “Accessing the database”
on page 11.

In this context, it is necessary to have a look at what happens when
another application tries to modify the same records that are stored (in
disconnected mode) in the memory (DataSet object) of the first
application.

The following is an example of a test case:

1 The application DataAdapter retrieves data from a database table
through his Fill command.

2 The application DataAdapter inserts the retrieved data into a DataSet
object.

3 The application modifies a record of the table, acting on the tables
that are included in the DataSet.

4 Another application modifies the same record directly on the
database.

5 The DataAdapter transfers the changes to the database through his
Update command.

In this case, Step 5 will fail because the Update command of the
DataAdapter does not commit changes if the record on the database has
changed since the execution of the Fill command.

To avoid these problems, the DataAdapter can lock the records retrieved
with the Fill command, releasing the lock only after the Update
command is called. In the meantime, no other application can modify
these records. This is called "pessimistic lock strategy".

If the DataAdapter does not lock the records it follows the "optimistic
lock strategy": that is, a lock is in fact set, but only for the (brief) time
necessary to commit (roughly from the start to the end time of the
Update command).

This locking strategy choice is supported by the Datalayer in this way:
when an 1psTable object is created from an 1psresolver Object, the
locking strategy parameter can be set, as show in the following example:

->myTable =
vaRelease>(LockingStrategy.PESSIMISTIC LOCK) ;

resolver.table<Pro

or

Data Layer Documentation

RECORDS LOCKING STRATEGIES

IDBTable<ProvaRel
resolver.table<Pr

=>myTable =
Release>(LockingStrategy.OPTIMISTIC LOCK) ;

If the parameter is not set, the default strategy will be used, which is
named “optimistic locking”.

For further information, see the following sections:
e “Usage of optimistic lock” on page 33

e “Usage of pessimistic lock” on page 33

Usage of optimistic lock

The optimistic lock is used by default. No additional code has to be
written by the programmer.

All the examples shown in the previous paragraphs implement the
optimistic lock.

Usage of pessimistic lock

Pessimistic locking is suitable for multi-application / multi-user
environment, where many applications or many instances of the same
application run simultaneously.

If the programmer chooses the pessimistic locking strategy, he/she must
try to reduce at minimum the lock-time, releasing the lock as soon as
possible.

Please note that if the table was loaded in the DataSet using some filter
(see “Loading filtered data” on page 24), only the filtered and loaded
records are locked.

The lock can be released using in two ways, as described in the following.

Way one

The programmer can release the lock committing the table changes by
using the commit method of 1pBTable, as shown in section “Committing
changes to the physical database” on page 29.

Please note that, starting from when the locks are released, the 1psrable
object works with optimistic strategy. It is not possible to have the same
object keep working with pessimistic strategy because, in order to create
new locks, the object must be totally re-filled with data. The only way to
do this is by re-calling the Fill method of the DataAdapter object, and so
creating a new 1pBTable Object.

Data Layer Documentation 33

3 — DATA LAYER MAIN LIBRARIES

//open the table with pessimistic locking

IDBTable<Prova> myTable =
resolver.table<Prova>(LockingStrategy.PESSIMISTIC LOCK) ;

//modify/insert/delete rows of the table

VA

//commit changes and release the lock on records

myTable.commit () ;

//hereafter the myTable object, since released his locks,
works with optimistic stategy

//modify/insert/delete rows of the table

/]

//simply commit changes in optimistic way

myTable.commit () ;

//if we want to work again with pessimistic locking on
the same table, create a new table on the domain class Prova

IDBTable<Prova> myTable2 =
resolver.table<Prova>(LockingStrategy.PESSIMISTIC LOCK) ;

//now we work again with pessimistic locking

Way two

The programmer can release the lock without committing changes by
using the releaseLockiithoutComnit method of 1pBTable.

After this method is called, the lock is released, and the rperabie object
starts working in optimistic locking strategy. Previous data changes are
not committed without being lost in the table stored in memory; this
way, the programmer can further commit them on the application.

//open the table with pessimistic locking

34 Data Layer Documentation

RECORDS LOCKING STRATEGIES

IDBTable<Prova> myTable =
resolver.table<Prova>(LockingStrategy.PESSIMISTIC LOCK) ;

//modify/insert/delete rows of the table

/).

//Releaese the records locks. Changes are neither

committed nor rolled back

myTable.releaseLockWithoutCommit () ;

//hereafter the myTable object, since released his locks,
works with optimistic stategy

//simply commit changes in optimistic way

myTable.commit () ;

Note that the rollback method of the 1oeTan1e object does not affect the
lock release, because it operates at a memory level, without interacting
with the database.

Example:

//open the table with pessimistic locking

IDBTable<Prova> myTable =
resolver.table<Prova>(LockingStrategy.PESSIMISTIC LOCK) ;

//modify/insert/delete rows of the table
VA
//rollback changes (the lock is NOT released)

myTable.rollback() ;

//the myTable keep working with pessimistic locking

See also:

¢ “Mapping between tables and domain classes” on page 10
e “Accessing the database” on page 11

e “Data operations” on page 21

e “Creation of tables, domain classes, and mapping file” on page 13

Data Layer Documentation 35

3 — DATA LAYER MAIN LIBRARIES

36 Data Layer Documentation

DataSetDBLayer library

This chapter is organized into the following sections:

¢ “Introduction” on page 38

e “Description of the DataSetManager public methods” on page 39
¢ “Example of usage” on page 40

Related topics:

e “Data Layer main libraries” on page 9

Data Layer Documentation 37

4 — DATASETDBLAYER LIBRARY

Introduction

38

The EC.JRC.MARS.DataSetDBLayer library is another Datalayer library
that is aimed at saving the content of a DataSet object to a DB.

Unlike the JRC.IPSC.MARS.DB library, which requires the existence of a
Domain class associated to the DB table, the DataSetDBLayer library
associates a DataSet' DataTable to a DB table, without the need of
creating a C# class for every table. This is useful when the structure of the
CH objects is not known in advance.

Many of the concepts described for the main Datalayer library are valid
for the DataSetDBLayer too.

For example, the mapping mechanism is the same: the user must create
the XML mapping files that, in this case, will map the DB table columns to
the DataSet table columns (rather than the domain class properties).

The EC.JRC.MARS.DataSetDBLayer library works with DB tables only if
these define a primary key.

The main object of the EC.JRC.MARS.DataSetDBLayer library is the
DataSetManager class. It contains the methods to save a DataSet table to
the database.

To easily integrate the library in the BioMA Framework, the
DataSetManager class also provides a method to save an
EC.MARS.ModellLayer.Data.Table object to a database. The
EC.MARS.ModellLayer.Data.Table is the class of the BioMA Model Layer
that represents a table containing the model output (see the BioMA
Model Layer Documentation for more details, which you can download
from the Agri4Cast Software Portal).

Data Layer Documentation

https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=s

DESCRIPTION OF THE DATASETMANAGER PUBLIC METHODS

Description of the DataSetManager public methods

In the following is provided a short description of the public methods of
the DataSetManager.

DataSetManager (DataSet dataSet, string connectionString, string
providerName)

Constructs an instance of this class using an existing DataSet.

bool TestConnection ()

Returns true if the connection can be opened, false otherwise. If the
connection is already open, returns true. If the connection is not
already open the method tries to open it. If the connection open
succeeds, then the program closes it again.

void SaveTableToDB (Table table, IDBMapper mapper)

Saves a EC.JRC.MARS.ModelLayer.Data.Table to the database, using
a specified mapper to map the Table columns to the DB Columns.
To convert (if necessary) the values to the Type of the DB Column, it
uses one of the registered ValueConverters.

void SaveTableToDB (Data Table table, IDBMapper mapper)

Saves a DataTable to the database, using a specified mapper to map
the DataTable columns to the DB Columns. To convert (if necessary)
the values to the Type of the DB Column, it uses one of the
registered ValueConverters .

void CloseEverything ()

See also:

¢ “Example of usage” on page 40

Data Layer Documentation 39

4 — DATASETDBLAYER LIBRARY

Example of usage

In this example we will use the DataSetDBLayer library to save the
content of a sample DataSet into a database.

The next figure shows the structure of the sample database. In this case
we use a SQLServer compact edition database:

4 Databasel.sdf
a | Tables
4 || DB_TABLE_ONE
4 [Columns
¢ DB_COL_1
] DB_COL_2
3 Indexes
4 [] DB_TABLE_TWO
4 [Columns
¢ DB_COL3
=] DB_COL_4
- 3 Indexes

The DataSet structure is similar. We use a dataset composed by two
tables, containing two columns each. Note that both tables have a
primary key (mandatory).

To map the DataSet structure into the DB structure, we use a mapping
file. The structure of the DataSetDBLayer mapping files is identical to the
structure of the main Datalayer library mapping files.

Content of our sample mapping file

<?xml version="1.0" encoding="utf-8" ?>

<mappings xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalLocation="JRC.IPSC.MARS.DB mappingschema.xsd"
xmlns="JRC.IPSC.MARS.DB">

<domainMapping DomainClassName="FirstTable" >
<tableMapping TableName="DB_TABLE_ONE" >

<Column Name="DB_COL_1" Member="Coll" />

<Column Name="DB_COL_2" Member="Col2" />

</tableMapping>

40 Data Layer Documentation

EXAMPLE OF USAGE

</domainMapping>
<domainMapping DomainClassName="SecondTable" >
<tableMapping TableName="DB_TABLE_TWO" >
<Column Name="DB_COL_3" Member="Col3" />
<Column Name="DB_COL_4" Member="Col4" />
</tableMapping>
</domainMapping>

</mappings>

The following is the code to use the library starting from a DataSet object
(collection of System.Data.DataTable objects):

class Program

{

static void Main(string[] args)

{
//create and fill the sample dataset (2 tables)
DataSet ds=new DataSet();
ds.Tables.Add("FirstTable");
ds.Tables.Add("SecondTable");
ds.Tables["FirstTable"].Columns.Add("Coll");
ds.Tables["FirstTable"].Columns.Add("Col2");
ds.Tables["SecondTable"].Columns.Add("Col3");
ds.Tables["SecondTable"].Columns.Add("Col4");
ds.Tables["FirstTable"].Rows.Add(new object[] {1, 3.4});
ds.Tables["FirstTable"].Rows.Add(new object[] { 2, 5.4 });
ds.Tables["SecondTable"].Rows.Add(new object[] { "abc", 4.2 });

ds.Tables["SecondTable"].Rows.Add(new object[] { "def", 1.4 });

string ConnString = "insert here the connection string";

string ProviderName = "System.Data.SqlServerCe.3.5";//name of
the sqglserver ce driver

Data Layer Documentation 41

4 — DATASETDBLAYER LIBRARY

//create the DataSetManager object (please note it is based on
another new dataset object)

DataSetManager dsm = new DataSetManager(new DataSet()

, ConnString, ProviderName);

//listen to DataSetManager error/warning messages
dsm.errorMessageEvent += ShowMessage;

dsm.warningMessageEvent += ShowMessage;

//test DB connection
if (!dsm.TestConnection())
{
ShowMessage("Error connecting to DB");

return;

//create the mapper object based on the XML mapping file
string MappingFilePath = "SampleMapping.xml";

IDBMapper mapper = new
TableColumnsToDomainClassFields(MappingFilePath);

foreach (DataTable table in ds.Tables)

{
if (mapper.getDomainClassNames().Contains(table.TableName))
{
//save the table
dsm.SaveTableToDB(table, mapper);
ShowMessage("Table '" + table.TableName + "' saved to
the database");
}

Console.WriteLine("End");

42 Data Layer Documentation

EXAMPLE OF USAGE

private static void ShowMessage(string msg)

{

Console.WriteLine("Message from data layer:"+msg);

The following is the code to use the library starting from a DataCollection
object (collection of EC.MARS.ModellLayer.Data.Table objects):

string ConnString = "insert here the connection string";

string ProviderName = "System.Data.SqlServerCe.3.5";//name of
the sglserver ce driver

//create and fill the DataCollection

DataCollection dc= new DataCollection();

dc

dc.
dc.
dc.
dc.
dc.
dc.
dc.

.AddTable("FirstTable");

GetTable("FirstTable").AddColumn("Coll",typeof(double));
GetTable("FirstTable").AddColumn("Col2", typeof(double));
AddTable("SecondTable");
GetTable("SecondTable").AddColumn("Col3", typeof(string));
GetTable("SecondTable").AddColumn("Col4d", typeof(double));
GetTable("FirstTable").AddRow(new object[] { 5, 5.4 });

GetTable("FirstTable").AddRow(new object[] { 6, 6.4 });

dc.GetTable("SecondTable").AddRow(new object[] { "xyz", 5.4 });

dc.GetTable("SecondTable").AddRow(new object[] { "mno", 6.4 });

//create the DataSetManager object

DataSetManager dsm3 = new DataSetManager(new DataSet(),
ConnString, ProviderName);

//listen to DataSetManager error/warning messages

Data Layer Documentation 43

4 — DATASETDBLAYER LIBRARY

dsm3.errorMessageEvent += ShowMessage;

dsm3.warningMessageEvent += ShowMessage;

//test DB connection
if (!dsm3.TestConnection())
{
ShowMessage("Error connecting to DB");

return;

//create the mapper object based on the XML mapping file
string MappingFilePath = "SampleMapping.xml";

IDBMapper mapper = new
TableColumnsToDomainClassFields(MappingFilePath);

foreach (Table table in dc.Tables)

{
if (mapper.getDomainClassNames().Contains(table.Name))
{
//save the table
dsm3.SaveTableToDB(table, mapper);
ShowMessage("Table '" + table.Name + "' saved to the
database");
}
}

44 Data Layer Documentation

	About this document
	About the Data layer
	Purposes of the Data layer

	Data Layer main libraries
	Mapping between tables and domain classes
	Accessing the database
	Setting up a C# project

	Creation of tables, domain classes, and mapping file
	Generating database tables from a strongly-typed
	Generating database tables from a set of domain classes
	Generating domain classes code from database tables
	Generating the mapping file

	Data operations
	Creating the IDB Resolver object and obtaining a reference to a table
	Multi-tables management by the same resolver
	Loading filtered data
	Reading records
	Adding a new record
	Deleting a record
	Committing changes to the physical database
	Rolling back changes

	Records locking strategies
	Usage of optimistic lock
	Usage of pessimistic lock

	DataSetDBLayer library
	Introduction
	Description of the DataSetManager public methods
	Example of usage

